Cyclodextrin Glucanotransferase of Alkalophilic Strain Caldalkalibacillus mannanilyticus IB-OR17-B1

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Extracellular cyclodextrin glucanotransferase (CGTase, K.F.2.1.19) was characterized for the first time in a strain of bacteria of the species Caldalkalibacillus mannanilyticus IB-OR17-B1. The enzyme was isolated from the culture supernatant using ultrafiltration and affinity adsorption on corn starch. The specific activity of the CGTase was increased in 18-fold as a result of purification with the enzyme yield 56%. The molecular mass of the purified enzyme was 70 kDa according to the denaturing electrophoresis in polyacrylamide gel. The CGTase of C. mannanilyticus IB-OR17-B1 demonstrated a maximal cyclizing activity under pH 8 and temperature 60°C, respectively, and it was stable in the pH range 7–10 and temperatures ≤70°C. The thermal stability of the enzyme under 70°C increased by 10–15% in the presence 5–10 mM of calcium and magnesium salts. The cations of Ag+, Cu2+, Zn2+, Fe2+ and Fe3+ in concentration 5 mM inhibited a CGTase activity by 90, 26, 23, 18 and 11%, respectively. The purified CGTase under optimal conditions and enzyme-substrate ratio 1 U/g converted a potato starch during 24 h to mixture of α-, β- and γ-cyclodextrins with mass ratio 38.8 : 52.6 : 8.6 and yield 42%.

About the authors

P. Yu. Milman

Institute of Biology of Ufa Federal Research Centre of the RAS

Email: gleakt@anrb.ru
Russia, 450054, Ufa

E. A. Gilvanova

Institute of Biology of Ufa Federal Research Centre of the RAS

Email: gleakt@anrb.ru
Russia, 450054, Ufa

G. E. Aktuganov

Institute of Biology of Ufa Federal Research Centre of the RAS

Author for correspondence.
Email: gleakt@anrb.ru
Russia, 450054, Ufa

References

  1. Jemli S., Messaoud E., Ayadi-Zouari D., Naili B., Khemakhem B., Bejar S. // Biochem. Eng. J. 2007. V. 34. № 1. P. 44–50. https://doi.org/10.1016/j.bej.2006.11.016
  2. Aroob I., Ahmad N., Rashid N. // Amylase. 2021. V. 5. № 1. P. 23–37. https://doi.org/10.1515/amylase-2021-0003
  3. Kurkov S.V., Loftsson T. // Int. J. Pharm. 2013. V. 453. № 1. P. 167–180. https://doi.org/10.1016/j.ijpharm.2012.06.055
  4. Astray G., Gonzalez-Barreiro C., Mejuto J., Rial-Otero R., Simal-Gándara J. // Food Hydrocoll. 2009. V. 23. № 7. P. 1631–1640. https://doi.org/10.1016/j.foodhyd.2009.01.001
  5. Abdel-Naby M.A., El-Refai H.A., Abdel-Fattah A.F. // J. Appl. Microbiol. 2011. V. 111. № 5. P. 1129–1137. https://doi.org/10.1111/j.1365-2672.2011.05136.x
  6. Szejtli J. Cyclodextrin Technology – Topics in Inclusion Science. / Netherlands: Springer Science & Business Media, 2013. 450 p. https://doi.org/10.1007/978-94-015-7797-7
  7. Czinkoczky R., Nemeth A. // Hung. J. Ind. Chem. 2019. V. 47. № 2. P. 5–10. https://doi.org/10.33927/hjic-2019-14
  8. Hamoudi M., Fattal E., Gueutina C., Nicolas V., Bochota A. // Int. J. Pharm. 2011. V. 416. № 2. P. 507–514. https://doi.org/10.1016/j.ijpharm.2011.01.062
  9. Marcon F., Mathiron D., Pilard S., Lemaire-Hurtel A., Dubaele J., Djedaini-Pilard F. // Int. J. Pharm. 2009. V. 379. № 2. P. 244–250. https://doi.org/10.1016/j.ijpharm.2009.05.029
  10. Sian H.K., Said M., Hassan O., Kamaruddin K., Ismail A.F., Rahman R. et al. // Process Biochem. 2005. V. 40. № 3–4. P. 1101–1111. https://doi.org/10.1016/j.procbio.2004.03.018
  11. Wang J., Cao Y., Sun B., Wang C. // Food Chem. 2011. V. 127. № 4. P. 1680–1685. https://doi.org/10.1016/j.foodchem.2011.02.036
  12. Lim C.H., Rasti B., Sulistyo J., Hamid M.A. // Heliyon. 2021. V. 7. e06305. https://doi.org/10.1016/j.heliyon.2021.e06305
  13. Saini K., Pathak V.M., Tyagi A., Gupta R. // Catalysis Research. 2022. V. 2. № 3. https://doi.org/10.21926/cr.2203029
  14. Zhao F., Li Y., Li C., Ban X., Gu Z., Li Z. // Food Hydrocolloids. 2022. V. 133. № 1. 107951. https://doi.org/10.1016/j.foodhyd.2022.107951
  15. Zhou J., Feng Z., Liu S., Wei F., Shi Y., Zhao L. et al. // Mol. Plant Pathol. 2021. V. 22. № 1. P. 130–144. https://doi.org/10.1111/mpp.13014
  16. Biwer A., Antranikian G., Heinzle E. // Appl. Microbiol. Biotechnol. 2002. V. 59. № 6. P. 609–617. https://doi.org/10.1007/s00253-002-1057-x
  17. Zheng M., Endo T., Zimmermann W. // Aust. J. Chem. 2002. V. 55. № 2. P. 39–48. https://doi.org/10.1071/CH01189
  18. Li C., Ahn H.J., Kim J.H., Kim Y.W. // Carbohydr. Polym. 2014. V. 99. P. 39–46. https://doi.org/10.1016/j.carbpol.2013.08.056
  19. Saini K., Pathak V.M., Tyagi A., Gupta R. // Catalysis Research. 2022. V. 2. № 3: 029. P. 1–56. https://doi.org/10.21926/cr.2203029
  20. Melentiev A.I., Galimzianova N.F., Gilvanova E.A., Shchelchkova E.A., Kuzmina L.Yu., Boyko T.F. et al. // Adv. Microbiol. 2014. V. 4. № 8. P. 455–464. https://doi.org/10.4236/aim.2014.48050
  21. Gupta R.S., Patel S., Saini N., Chen S. // Int. J. Syst. Evol. Microbiol. 2020. V. 70. № 11. P. 5753–5798. https://doi.org/10.1099/ijsem.0.004475
  22. Yoon S.H., Ha S.M., Kwon S., Lim J., Kim Y., Seo H. et al. // Int. J. Syst. Evol. Microbiol. 2017. V. 67. № 5. P. 1613–1617. https://doi.org/10.1099/ijsem.0.001755
  23. Adebule A.P. // J. Adv. Med. Life Sci. 2018. V. 6. № 3. P. 1–3. https://doi.org/10.5281/zenodo.1198928
  24. Kumar S., Stecher G., Li M., Knyaz C., Tamura K. // Mol. Biol. Evol. 2018. V. 35. № 6. P. 1547–1549. https://doi.org/10.1093/molbev/msy096
  25. Felsenstein J. // Evolution. 1985. V. 39. № 4. P. 783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
  26. Martins R.F., Hatti-Kaul R. // Enzyme Microb. Technol. 2002. V. 30. № 1. P. 116–124. https://doi.org/10.1016/S0141-0229(01)00461-6
  27. Usanov N.G., Gil’vanova E.A., Eli’zarev P.A., Prutsakova E.A., Melent’ev A.I. // Appl. Biochem. Microbiol. 2007. V. 43. № 1. P. 105-110. https://doi.org/10.1134/S000368380701019X
  28. Tilden E.B., Hudson G.S. // J. Bacteriol. 1942. V. 43. № 4. P. 527–544. https://doi.org/10.1128/jb.43.4.527-544.1942
  29. Neuhoff V., Arold N., Taube D., Ehrhardt W. // Electrophoresis. 1988. V. 9. № 6. P. 255–262. https://doi.org/10.1002/elps.1150090603
  30. Доусон Р., Элиот Д., Элиот У., Джонс К. Справочник биохимика: Перевод с англ. / М.: Мир, 1991. 544 с.
  31. Nogi Y., Takami H., Horikoshi K. // Int. J. Syst. Evol. Microbiol. 2005. V. 55. № 6. P. 2309–2315. https://doi.org/10.1099/ijs.0.63649-0
  32. Xue Y., Zhang X., Zhou C., Zhao Y., Cowan D.A., Heaphy S. et al. // Int. J. Syst. Evo.l Microbiol. 2006. V. 56. № 6. P. 1217–1221. https://doi.org/10.1099/ijs.0.64105-0
  33. Zhao W., Zhang C.L., Romanek C.S., Wiegel J. // Int. J. Syst. Evo.l Microbiol. 2008. V. 58. № 5. P. 1106–1108. https://doi.org/10.1099/ijs.0.65363-0
  34. de Jong S.I., van den Broek M.A., Merkel A.Y., de la Torre Cortes P., Kalamorz F., Cook G.M. et al. // Extremophiles. 2020. V. 24. № 6. P. 923–935. https://doi.org/10.1007/s00792-020-01205-w
  35. Yampayont P., Iizuka M., Ito K., Limpaseni T. // J. Incl. Phenom. Macrocycl. Chem. 2006. V. 56. № 1–2. P. 203–207. https://doi.org/10.1007/s10847-006-9084-3
  36. Alves-Prado H.F., Carneiro A.A.J., Pavezzi F.C., Gomes E., Boscolo M., Franco C.M.L. et al. //Appl. Biochem. Biotechnol. 2008. V. 146. № 1–3. P. 3–13. https://doi.org/10.1007/s12010-007-8093-z
  37. Savergave L.S., Dhule S.S., Jogdand V.V., Nene S.N., Gadre R.V. // Biochem. Eng. J. 2008. V. 39. № 3. P. 510–515. https://doi.org/10.1016/j.bej.2007.09.020
  38. More S.S., Niraja R., Evelyn C., Byadgi A.M., Shweta V., Mangaraj S.D. // Croatian J. Food Technol. Biotechnol. Nutrit. 2012. V. 7. № 1–2. P. 90–97.
  39. Reddy S.V., More S.S., Annappa G.S. // J. Basic Microbiol. 2017. V. 57. № 11. P. 974–981. https://doi.org/10.1002/jobm.201700270
  40. Atanasova N., Kitayska T., Bojadjieva I., Yankov D., Tonkova A. // Process Biochem. 2011. V. 46. № 1. P. 116–122. https://doi.org/10.1016/j.procbio.2010.07.027
  41. Cao X., Jin Z., Chen F., Wang X. // J. Food Biochem. 2005. V. 28. № 6. P. 463–475. https://doi.org/10.1111/j.1745-4514.2004.04603.x
  42. Kitayska T., Petrova P., Ivanova V., Tonkova A. // Appl. Biochem. Biotechnol. 2011. V. 165. № 5–6. P. 1285–1295. https://doi.org/10.1007/s12010-011-9346-4
  43. Fujita Y., Tsubouchi H., Inagi Y., Tomita K., Ozaki A., Nakanishi K. // J. Ferment. Bioeng. 1990. V. 70. № 3. P. 150–154. https://doi.org/10.1016/0922-338X(90)90174-U
  44. Yim D.G., Sato H.H., Park Y.H., Park Y.K. // J. Ind. Microbiol. Biotechnol. 1997. V. 18. № 6. P. 402–405. https://doi.org/10.1038/sj.jim.2900400
  45. Higuti I.H., Grande S.W., Sacco R., Jose do Nascimento A. // Braz. Arch. Biol. Technol. 2003. V. 46. № 2. P. 183–186. https://doi.org/10.1590/S1516-89132003000200007
  46. Li C., Chen S., Gu Z., Hong Y., Cheng L., Li Z. // Food Biosci. 2018. V. 26. P. 139–144. https://doi.org/10.1016/j.fbio.2018.10.006
  47. Chung H.-J., Yoon S.-H., Kim M.-J., Kweon K.-S., Lee I.-W., Kim J.-W. et al. // J. Agric. Food Chem. 1998. V. 46. № 3. P. 952–959. https://doi.org/10.1021/jf970707d
  48. Jia X., Ye X., Chen J., Lin X., Vasseur L., You M. // Starch – Starke. 2017. V. 70. № 1–2. https://doi.org/10.1002/star.201700016

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (218KB)
3.

Download (613KB)
4.

Download (53KB)
5.

Download (209KB)
6.

Download (98KB)
7.

Download (161KB)
8.

Download (134KB)

Copyright (c) 2023 П.Ю. Мильман, Е.А. Гильванова, Г.Э. Актуганов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies