Probiotic Properties of Saccharomycetes (Review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The purpose of the review is to summarize and analyze information on the molecular genetic basis and methods for studying the probiotic activity of Saccharomycetes fungi, the mechanisms of their physiological action, and their application in biotechnology. The relevance of research in this area is confirmed by the dynamics of the growth of publications. The effectiveness of Saccharomyces boulardii in the treatment and prevention of diarrhea of various etiologies, relapses of C. difficile infection, side effects of H. pylori infection therapy has been established with a high level of evidence. Genetic, cytological, cultural and biochemical features of S. boulardii determine their probiotic activity. Other Saccharomyces strains with probiotic potential are most often isolated from national fermented plant and dairy products. A unified methodology for studying the probiotic properties of yeast has not yet been created; clinical trials involving people are needed to confirm their status. Promising probiotics are strains of the species S. cerevisiae and K. marxianus, which have an international safety status. Possible mechanisms of physiological action of Saccharomycetes include antimicrobial and antitoxic, trophic, antisecretory and anti-inflammatory effects. Some of the mechanisms of yeast probiotic action differ from those of bacteria, and not all of them are yet understood. Saccharomycetes probiotics can be used to improve the biological value, quality and safety of food products.

About the authors

S. A. Ryabtsevа

North-Caucasus Federal University

Author for correspondence.
Email: ryabtseva07@mail.ru
Russia, 355017, Stavropol

A. G. Khramtsov

North-Caucasus Federal University

Email: ryabtseva07@mail.ru
Russia, 355017, Stavropol

S. N. Sazanova

North-Caucasus Federal University

Email: ryabtseva07@mail.ru
Russia, 355017, Stavropol

R. O. Budkevich

North-Caucasus Federal University

Email: ryabtseva07@mail.ru
Russia, 355017, Stavropol

N. M. Fedortsov

North-Caucasus Federal University

Email: ryabtseva07@mail.ru
Russia, 355017, Stavropol

A. A. Veziryan

North-Caucasus Federal University

Email: ryabtseva07@mail.ru
Russia, 355017, Stavropol

References

  1. Nielsen J. // Biotechnol J. 2019. V. 14. № 3. https://doi.org/10.1002/biot.201800421
  2. Hatoum R., Labrie S., Fliss I. // Front Microbiol. 2012. V. 19. № 3. doi.org/ .2012.00421https://doi.org/10.3389/fmicb
  3. Staniszewski A., Kordowska-Wiater M. // Foods. 2021. V. 10. № 6. https://doi.org/10.3390/foods10061306
  4. Vemuri R., Shankar E.M., Chieppa M., Eri R., Kavanagh K. // Microorganisms. 2020. V. 8. № 4. https://doi.org/10.3390/microorganisms8040483
  5. Nash A.K., Auchtung T.A., Wong M.C., Smith D.P., Gesell J.R., Ross M.C., et al. // Microbiome. 2017. V. 5. № 1. https://doi.org/10.1186/s40168-017-0373-4
  6. Hill C., Guarner F., Reid G., Gibson G.R. et al. // Nature Reviews Gastroenterology & Hepatology. 2014. V. 11. P. 506–514.
  7. Рябцева С.А., Сазанова С.Н., Дубинина А.А. // Современная наука и инновации. 2019. № 2(26). С. 138–151.
  8. Pais P., Almeida V., Yılmaz M., Teixeira M.C. // J Fungi (Basel). 2020. V. 6. № 2. P. 78. https://doi.org/10.3390/jof6020078
  9. Lazo-Vélez M.A., Serna-Saldívar S.O., Rosales-Medina M.F., Tinoco-Alvear M., Briones-García M. // A review. J. Appl. Microbiol. 2018. V. 125. P. 943–951.
  10. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 5: suitability of taxonomic units notified to EFSA until September 2016 // EFSA Journal. 2017. V. 15. P. 4366.https://doi.org/10.2903/j.efsa.2017.4663
  11. McFarland L.V. // World J Gastroenterol. 2010. V. 16. № 18. P. 2202–2222.https://doi.org/10.3748/wjg.v16.i18.2202
  12. McFarland L., Bernasconi P. // Microbial Ecology in Health and Disease. 1993. V. 6. P. 157–171.
  13. McCullough M.J., Clemons K.V., McCusker J.H., Stevens D.A. // J. Clin. Microbiol. 1998. V. 36. P. 2613–2617. https://doi.org/10.1128/JCM.36.9.2613-2617.1998
  14. Czerucka D., Piche T., Rampal P. // Aliment. Pharmacol. Ther. 2007. V. 26. P. 767–778.
  15. McFarland L.V. // A Meta-analysis and Systematic Review. Antibiotics (Basel). 2015. V. 13. P. 160–78.
  16. Szajewska H., Horvath A., Kołodziej M. // Aliment Pharmacol Ther. 2015. V. 41. № 12. P.1237–45.
  17. Szajewska H., Kołodziej M. // Aliment Pharmacol Ther. 2015. V. 42. № 7. P. 793–801.
  18. Moré M.I., Vandenplas Y. // Clin Med Insights Gastroenterol. 2018. V. 11.https://doi.org/10.1177/1179552217752679
  19. Kaźmierczak-Siedlecka K., Ruszkowski J., Fic M., Folwarski M., Makarewicz W. // Curr. Microbiol. 2020. V. 77. № 9. P. 1987–1996.https://doi.org/10.1007/s00284-020-02053-9
  20. Li Z., Zhu G., Li C., Lai H., Liu X., Zhang L. // Nutrients. 2021. V. 13. № 12. P. 4319.https://doi.org/10.3390/nu13124319
  21. Кайбышева В.О., Никонов Е.Л. Пробиотики с позиции доказательной медицины // Доказательная гастроэнтерология. 2019. № 8(3). С. 45–54. doi.org/https://doi.org/10.17116/dokgastro2019803145
  22. Mitterdorfer G., Mayer H.K., Kneifel W., Viernstein H. // J. Appl. Microbiol. 2002. V. 93. P. 521–530.
  23. Fietto J.L., Araújo R.S., Valadão F.N., Fietto L.G., Brandão R.L., Neves M.J. et al. // Can. J. Microbiol. 2004. V. 50. P. 615–621.
  24. Edwards-Ingram L., Gitsham P., Burton N., Warhurst G., Clarke I., Hoyle D. et al. // Appl. Environ. Microbiol. 2007. V. 73. P. 2458–2467.
  25. Liu Y., Wu Q., Wu X., Algharib S. A., Gong F., Hu J. et al. // Int. J. Biol. Macromol. 2021. V. 173. P. 445–456. https://doi.org/10.1016/j.ijbiomac.2021.01.125
  26. Fortin O., Aguilar-Uscanga B., Vu K.D., Salmieri S., Lacroix M. // Nutr. Cancer. 2018. V. 70. № 1. P. 83–96. https://doi.org/10.1080/01635581.2018.1380204
  27. Rajkowska K., Kunicka–Styczyńska A. // Biotechnology & Biotechnological Equipment. 2009. V. 23. P. 662–665.
  28. Fernández-Pacheco P., Pintado C., Briones Pérez A., Arévalo-Villena M. J. // Fungi (Basel). 2021. V. 7. № 3. P. 177. https://doi.org/10.3390/jof7030177
  29. Datta S., Timson D.J., Annapure U.S. // J Sci Food Agric. 2017. V. 97. № 9. P. 3039–3049.https://doi.org/10.1002/jsfa.8147
  30. Offei B., Vandecruys P., De Graeve S., Foulquié-Moreno M.R., Thevelein J.M. // Genome Res. 2019. V. 9. P. 1478–1494. https://doi.org/10.1101/gr.243147.118
  31. Khatri I., Tomar R., Ganesan K., Prasad G.S., Subramanian S. // Sci. Rep. 2017. V. 7. № 1. P. 371–385.
  32. Pais P., Oliveira J., Almeida V., Yilmaz M., Monteiro P.T., Teixeira M.C. // Genomics. 2021. V. 113. P. 530–539.
  33. Fernandez-Pacheco P., Arévalo-Villena M., Rosa I.Z., Briones Pérez A. // Food Res. Int. 2018. V. 112. P. 143–151. https://doi.org/10.1016/j.foodres.2018.06.008
  34. Fernández-Pacheco P., Arévalo-Villena M., Bevilacqua A., Corbo M.R., Briones A. // LWT Food Sci Technol. 2018. V. 97. P. 332–340.https://doi.org/10.1016/j.lwt.2018
  35. Fernández-Pacheco P., Ramos Monge I.M., Fernández-González M., Poveda Colado J.M., Arévalo-Villena M. // Front. Nutr. 2021. V. 8.https://doi.org/10.3389/fnut.2021.659328
  36. Fernández-Pacheco P., García-Béjar B., Jiménez-Del Castillo M., Carreño-Domínguez J., Briones Pérez A., Arévalo-Villena M.J. // Sci. Food Agric. 2021. V. 101. № 6. P. 2201–2209. https://doi.org/10.1002/jsfa.10839
  37. Fernández-Pacheco P., Rosa I.Z., Arévalo-Villena M., Gomes E., Pérez A.B. // Braz. J. Microbiol. 2021. V. 52. № 4. P. 2129–2144. https://doi.org/10.1007/s42770-021-00541-z
  38. Simões L.A., Cristina de Souza A., Ferreira I., Melo D.S., Lopes L.A.A., Magnani M. et al. // J. Appl. Microbiol. 2021. V. 131. № 4. P. 1983–1997. https://doi.org/10.1111/jam.15065
  39. Reyes-Becerril M., Alamillo E., Angulo C. // Probiotics Antimicrob Proteins. 2021. V. 13. № 5. P. 1292–1305. https://doi.org/10.1007/s12602-021-09769-5
  40. Palla M., Blandino M., Grassi A., Giordano D., Sgherri C., Quartacci M.F. et al. // Sci. Rep. 2020. V. 10. P. 12856.
  41. Palla M., Conte G., Grassi A., Esin S., Serra A., Mele M. et al. // Foods. 2021. V. 10. № 9. P. 2087.
  42. Okada Y., Tsuzuki Y., Sugihara N., Nishii S., Shibuya N., Mizoguchi A. et al. // J. Gastroenterol. 2021. V. 56. № 9. P. 829–842. https://doi.org/10.1007/s00535-021-01804-0
  43. Chelliah R., Kim E.J., Daliri E.B., Antony U., Oh D.H. // Foods. 2021. V. 10. № 6. P. 1428. https://doi.org/10.3390/foods10061428
  44. Pereira R.P., Jadhav R, Baghela A., Barretto D.A. // Probiotics Antimicrob Proteins. 2021. V. 13. № 3. P. 796–808. https://doi.org/10.1007/s12602-020-09734-8
  45. Zahoor F., Sooklim C., Songdech P., Duangpakdee O., Soontorngun N.S // Metabolites. 2021. V. 11. № 5. P. 312. https://doi.org/10.3390/metabo11050312
  46. Li S., Zhang Y., Yin P., Zhang K., Liu Y., Gao Y. et al. // J Dairy Sci. 2021. V. 104. № 6. P. 6559–6576. https://doi.org/10.3168/jds.2020-19845
  47. Hsiung R.T., Fang W.T., LePage B.A., Hsu S.A., Hsu C.H., Chou J.Y. // Probiotics Antimicrob Proteins. 2021. V. 13. № 1. P. 113–124. https://doi.org/10.1007/s12602-020-09661-8
  48. Nag D., Goel A., Padwad Y., Singh D. // Probiotics Antimicrob. Proteins. 2022. V. 18. https://doi.org/10.1007/s12602-021-09874-5
  49. Youn H.Y., Kim D.H., Kim H.J., Jang Y.S., Song K.Y., Bae D. et al // Probiotics Antimicrob. Proteins. 2022. https://doi.org/10.1007/s12602-021-09872-7
  50. Parafati L., Palmeri R., Pitino I., Restuccia C. // Food Microbiol. 2022. V. 103. P. 103950. https://doi.org/10.1016/j.fm.2021.103950
  51. Czerucka D., Rampal P. // World J. Gastroenterol. 2019. V. 25. № 18. P. 2188–2203. https://doi.org/10.3748/wjg.v25.i18.2188
  52. Наумова Е.С., Садыкова А.Ж., Михайлова Ю.В., Наумов Г.И. Полиморфизм лактозных генов молочных дрожжей Kluyveromyces marxianus, потенциальных пробиотических микроорганизмов. // Микробиология. 2017. Т. 86. № 3. С. 335–343.
  53. Голубев В.И. Микоцинотипирование // Микология и фитопатология. 2012. Т. 46. № 1. С. 3–13.
  54. Nascimento B.L., Delabeneta M.F., Rosseto L.R.B., Junges D.S.B., Paris A.P., Persel C. et al. // FEMS Yeast Research. 2020. V. 20. № 3.https://doi.org/10.1093/femsyr/foaa016
  55. Roussel C., De Paepe K., Galia W., de Bodt J., Chalancon S., Denis S. et al. // Gut Microbes. 2021. V. 13. № 1. P. 1953246. https://doi.org/10.1080/19490976.2021.1953246
  56. Gut A.M., Vasiljevic T., Yeager T., Donkor O.N. // Saudi J. Biol. Sci. 2022. V. 29. № 1. P. 550–563. https://doi.org/10.1016/j.sjbs.2021.09.025
  57. Ansari F., Alian Samakkhah S., Bahadori A., Jafari S.M., Ziaee M., Khodayari M.T. et al. // Crit. Rev. Food Sci. Nutr. 2021. V. 13. P. 1–29. https://doi.org/10.1080/10408398.2021.1949577
  58. Swieca M., Kordowska-Wiater M., Pytka M., Gawlik-Dziki U., Seczyk L., Złotek U. et al. // LWT. 2019. V. 100. P. 220–226.
  59. Chan M.Z.A., Toh M., Liu S.Q. // Int. J. Food Microbiol. 2021. V. 4. P. 350–109229. https://doi.org/10.1016/j.ijfoodmicro.2021.109229
  60. Polanowska K., Varghese R., Kuligowski M., Majcher M. // J. Sci. Food Agric. 2021. V. 101. № 13. P. 5487–5497. https://doi.org/10.1002/jsfa.11197
  61. Senkarcinova B., Graça Dias I.A., Nespor J., Branyik T. // LWT. 2019. V. 100. P. 362–367.
  62. Sarwar A., Tariq A., Al-Dalali S., Zhao X., Zhang J., Jalal ud Din et al. // Foods. 2019. V. 8. P. 468.
  63. Andrade R.P.,Oliveira D.R., Alencar Lopes A.C., Abreu L.R., Duarte W.F. // Food Research International. 2019. V. 125. № 2019 https://doi.org/10.1016/j.foodres.2019.108620
  64. Poloni V.L., Bainotti M.B., Vergara L.D., Escobar F., Montenegro M., Cavaglieri L. // Curr. Res. Food Sci. 2021. V. 4. P. 132–140. https://doi.org/10.1016/j.crfs.2021.02.006

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (76KB)
3.

Download (99KB)

Copyright (c) 2023 С.А. Рябцева, А.Г. Храмцов, С.Н. Сазанова, Р.О. Будкевич, Н.М Федорцов, А.А. Везирян

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».