Extracellular Vesicles of Bacteria Mediate Intercellular Communication: Practical Applications and Biosafety (Review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Extracellular vesicles, secreted by bacterial cells, are the focus of close attention of researchers. They are enriched with bioactive molecules, mediate the intercellular communication of micro- and macroorganisms, participate in the adaptation of bacteria to stressful conditions, reprogramming target cells, modulating immunoreactivity in higher organisms, changing the structure of microbial communities and ecosystems. The unique properties of bacterial extracellular vesicles (BEVs) open up broad prospects for their practical application – in clinical medicine, agriculture, biotechnology and ecology as diagnostic markers, vaccines, new biological products and means of their delivery. However, to implement the practical applications, a number of problems need to be solved. This review focuses on the ambiguous role of BEVs in the regulation of living systems, the problem of assessing the safety of BEVs and approaches to its solution related to innovative technologies.

About the authors

V. M. Chernov

Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences

Email: muzaleksei@mail.ru
Russia, 420111, Kazan

A. A. Mouzykantov

Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences

Author for correspondence.
Email: muzaleksei@mail.ru
Russia, 420111, Kazan

N. B. Baranova

Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences

Email: muzaleksei@mail.ru
Russia, 420111, Kazan

O. A. Chernova

Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences

Email: muzaleksei@mail.ru
Russia, 420111, Kazan

References

  1. Woith E., Fuhrmann G., Melzig M.F. // Int. J. Mol. Sci. 2019. V. 20. № 22. P. 5695.https://doi.org/10.3390/ijms20225695
  2. Bishop D., Work E.J.B.J. // Biochem. J. 1965. V. 96. № 2. P. 567–576. https://doi.org/10.1042/bj0960567
  3. Knox K., Cullen J., Work E.J.B.J. // Biochem. J. 1967. V. 103. № 1. P. 192–201. https://doi.org/10.1042/bj1030192
  4. Bladen H.A., Waters J.F. // J. Bacteriol. 1963. V. 86. № 6. P. 1339–1344. https://doi.org/10.1128/jb.86.6.1339-1344.1963
  5. Avila-Calderón E.D., Ruiz-Palma M.D.S., Aguilera-Arreola M.G., Velázquez-Guadarrama N., Ruiz E.A., Gomez-Lunar Z., et al. // Front Microbiol. 2021. V. 12. P. 557902. https://doi.org/10.3389/fmicb.2021.557902
  6. Briaud P., Carroll R.K. // Infect. Immun. 2020. V. 88. e00433-20. https://doi.org/10.1128/IAI.00433-20
  7. Tarashi S., Zamani M.S., Omrani M.D., Fateh A., Moshiri A., Saedisomeolia A. et al. // J. Immunol. Res. 2022. V. 2022. P. 8092170. https://doi.org/10.1155/2022/8092170
  8. Xie J., Li Q., Haesebrouck F., Van Hoecke L., Vandenbroucke R.E. // Trends Biotechnol. 2022. V. 40. №. 10. P. 1173–1194 https://doi.org/10.1016/j.tibtech.2022.03.005
  9. Chernov V.M., Mouzykantov A.A., Baranova N.B., Medvedeva E.S., Grygorieva T.Y., Trushin M.V. et al. // J. Proteomics. 2014. V. 110. P. 117–28. https://doi.org/10.1016/j.jprot.2014.07.020
  10. Gaurivaud P., Ganter S., Villard A., Manso-Silvan L., Chevret D., Boulé C. et al. // PLoS One. 2018. V. 13. № 11. e0208160. https://doi.org/10.1371/journal.pone.0208160
  11. de Souza L.F.L., Campbell G., Arthuso G.G.S., Gonzaga N.F., Alexandrino C.R., Assao V.S. et al. // Braz. J. Microbiol. 2022. V. 53. № 2. P. 1081–1084. https://doi.org/10.1007/s42770-022-00726-0
  12. Razin S., Hayflick L. // Biologicals. 2010. V. 38. № 2. P. 183–190. https://doi.org/10.1016/j.biologicals.2009.11.008
  13. Toyofuku M., Nomura N., Eberl L. // Nat. Rev. Microbiol. 2019. V. 17. №. 1. P. 13–24. https://doi.org/10.1038/s41579-018-0112-2
  14. Mozaheb N., Mingeot-Leclercq M.-P. // Front. Microbiol. 2020. V. 11. P. 600221. https://doi.org/10.3389/fmicb.2020.600221
  15. Potter M., Hanson C., Anderson A.J., Vargis E., Britt D.W. // Sci. Rep. 2020. V. 10. № 1. P. 21289. https://doi.org/10.1038/s41598-020-78357-4
  16. Stanton B.A. // Genes (Basel). 2021. V. 12. № 7. P. 1010. https://doi.org/10.3390/genes12071010
  17. Koeppen K., Hampton T.H., Jarek M., Scharfe M., Gerber S.A., Mielcarz D.W. et al. // PLoS Pathog. 2016. V. 12. № 6. e1005672. https://doi.org/10.1371/journal.ppat.1005672
  18. Pita T., Feliciano J.R., Leitão J.H. // Int. J. Mol. Sci. 2020. V. 21. № 24. P. 9634. https://doi.org/10.3390/ijms21249634
  19. Schatz D., Schleyer G., Saltvedt M.R., Sandaa R.A., Feldmesser E., Vardi A. // ISME J. 2021. V. 15. № 12. P. 3714–3721. https://doi.org/10.1038/s41396-021-01018-5
  20. Majdalani N., Vanderpool C.K., Gottesman S. // Crit. Rev. Biochem. Mol. Biol. 2005. V. 40. P. 93–113. https://doi.org/10.1080/10409230590918702
  21. Kumar P., Anaya J., Mudunuri S.B., Dutta A. // BMC Biol. 2014. V. 12. P. 78. https://doi.org/10.1186/s12915-014-0078-0
  22. Chen X., Sim S., Wurtmann E.J., Feke A., Wolin S.L. // RNA. 2014. V. 20. № 11. P. 1715–1724. https://doi.org/10.1261/rna.047241.114
  23. Diallo I., Provost P. // Int. J. Mol. Sci. 2020. V. 21. № 5. P. 1627. https://doi.org/10.3390/ijms21051627
  24. Zhang H., Zhang Y., Song Z., Li R., Ruan H., Liu Q. et al. // Int. J. Med. Microbiol. 2020. V. 310. № 1. P. 151356. https://doi.org/10.1016/j.ijmm.2019.151356
  25. Музыкантов А.А., Рожина Э.В., Фахруллин Р.Ф., Гомзикова М.О., Золотых М.А., Чернова О.А. и др. // Acta Naturae. 2021. Т. 13. № 4. С. 82–88. https://doi.org/10.32607/actanaturae.11506
  26. Cecil J.D., O’Brien-Simpson N.M., Lenzo J.C., Holden J.A., Chen Y.Y., Singleton W. et al. // PLoS One. 2016. V. 11. № 4. e0151967. https://doi.org/10.1371/journal.pone.0151967
  27. Sahr T., Escoll P., Rusniok C., Bui S., Pehau–Arnaudet G., Lavieu G. et al. // Nat. Commun. 2022. V. 13. № 1. P. 762. https://doi.org/10.1038/s41467-022-28454-x
  28. Turner L., Bitto N.J., Steer D.L., Lo C., D’Costa K., Ramm G. et al. // Front. Immunol. 2018. V. 9. P. 1466. https://doi.org/10.3389/fimmu.2018.01466
  29. Gottesman S., Storz G. // Cold Spring Harb. Perspect. Biol. 2011. V. 3. a003798. https://doi.org/10.1101/cshperspect.a003798
  30. Haning K., Cho S.H., Contreras L.M. // Front. Cell Infect. Microbiol. 2014. V. 4. P. 96. https://doi.org/10.3389/fcimb.2014.00096
  31. Острик А.А., Ажикина Т.Л., Салина Е.Г. // Успехи биологической химии. 2021. Т. 61. С. 229–252. https://doi.org/10.31857/S0555109920040121
  32. Stork M., Di Lorenzo M., Welch T.J., Crosa J.H. // J. Bacteriol. 2007. V. 189. № 9. P. 3479–88. https://doi.org/10.1128/JB.00619-06
  33. Michaux C., Verneuil N., Hartke A., Giard J.C. // Microbiol. 2014. V. 160. P. 1007–1019. https://doi.org/10.1099/mic.0.076208-0
  34. Beisel C.L., Storz G. // Mol. Cell. 2011. V. 41. P. 286–297. https://doi.org/10.1016/j.molcel.2010.12.027
  35. Stubbendieck R.M., Vargas–Bautista C., Straight P.D. // Front. Microbiol. 2016. V. 7. P. 1234. https://doi.org/10.3389/fmicb.2016.01234
  36. Ñahui Palomino R.A., Vanpouille C., Costantini P.E., Margolis L. // PLOS Pathogens. 2021. V. 17. № 5. e1009508. https://doi.org/10.1371/journal.ppat.1009508
  37. Uddin M.J., Dawan J., Jeon G., Yu T., He X., Ahn J. // Microorganisms. 2020. V. 8. № 5. P. 670. https://doi.org/10.3390/microorganisms8050670
  38. Koeppen K., Nymon A., Barnaby R., Bashor L., Li Z., Hampton T.H. et al. // Proc. Natl. Acad. Sci. USA. 2021. V. 118. № 28. e2105370118. https://doi.org/10.1073/pnas.2105370118
  39. Muraca M., Putignani L., Fierabracci A., Teti A., Perilongo G. // Discov. Med. 2015. V. 19. № 106. P. 343–348.
  40. Brameyer S., Plener L., Müller A., Klingl A., Wanner G., Jung K. // J. Bacteriol. 2018. V. 200. № 15. e00740-17. https://doi.org/10.1128/JB.00740-17
  41. Lee J., Lee E.Y., Kim S.H., Kim D.K., Park K.S., Kim K.P. et al. // Antimicrob. Agents Chemother. 2013. V. 57. № 6. P. 2589–2595. https://doi.org/10.1128/AAC.00522-12
  42. Schaar V., Uddback I., Nordstrom T., Riesbeck K. // J. Antimicrob. Chemother. 2014. V. 69. № 1. P. 117–120. https://doi.org/10.1093/jac/dkt307
  43. Toyofuku M., Morinaga K., Hashimoto Y., Uhl J., Shimamura H., Inaba H. et al. // ISME J. 2017. V. 11. P. 1504–1509. https://doi.org/10.1038/ismej.2017.13
  44. Rueter C., Bielaszewska M. // Front. Cell Infect. Microbiol. 2020. V. 10. P. 91. https://doi.org/10.3389/fcimb.2020.00091
  45. Zhao Z., Wang L., Miao J., Zhang Z., Ruan J., Xu L. et al. // Sci. Total Environ. 2022. V. 806. P. 151403. https://doi.org/10.1016/j.scitotenv.2021.151403
  46. Ahmadi Badi S., Moshiri A., Fateh A., Rahimi Jamnani F., Sarshar M., Vaziri F. et al. // Front. Microbiol. 2017. V. 8. P. 1610. https://doi.org/10.3389/fmicb.2017.01610
  47. Mjelle R., Aass K.R., Sjursen W., Hofsli E., Sætrom P. // iScience. 2020. V. 23. № 5. P. 101131. https://doi.org/10.1016/j.isci.2020.101131
  48. Rivera J., Cordero R.J., Nakouzi A.S., Frases S., Nicola A., Casadevall A. // Proc. Natl. Acad. Sci. USA. 2010. V. 107. № 44. P. 19002-7. https://doi.org/10.1073/pnas.1008843107
  49. Zingl F.G., Thapa H.B., Scharf M., Kohl P., Müller A.M., Schild S. // mBio. 2021. V. 12. № 3. e0053421. https://doi.org/10.1128/mBio.00534-21
  50. Kuipers M.E., Hokke C.H., Smits H.H., Nolte-'t Hoen E.N.M. // Front. Microbiol. 2018. V. 12. № 9. P. 2182. https://doi.org/10.3389/fmicb.2018.02182
  51. Chang X., Wang S.L., Zhao S.B., Shi Y.H., Pan P., Gu L. et al. // Mediators Inflamm. 2020. V. 2020. P. 1945832. https://doi.org/10.1155/2020/1945832
  52. Hua Y., Wang J., Huang M., Huang Y., Zhang R., Bu F. et al. // Emerg. Microbes Infect. 2022. V. 11. №1. P. 1281–1292. https://doi.org/10.1080/22221751.2022.2065935
  53. Sjöström A.E., Sandblad L., Uhlin B.E., Wai S.N. // Sci. Rep. 2015. V. 5. P. 15329. https://doi.org/10.1038/srep15329
  54. Chernov V.M., Chernova O.A., Mouzykantov A.A., Medvedeva E.S., Baranova N.B., Malygina T.Y. et al. // FEMS Microbiol. Lett. 2018. V. 365. № 18. https://doi.org/10.1093/femsle/fny185
  55. Marsh J.W., Hayward R.J., Shetty A.C., Mahurkar A., Humphrys M.S., Myers G.S.A. // Brief. Bioinform. 2018. V. 19. № 6. P. 1115–1129. https://doi.org/10.1093/bib/bbx043
  56. Tulkens J., Vergauwen G., Van Deun J., Geeurickx E., Dhondt B., Lippens L. et al. // Gut. 2020. V. 69. № 1. P. 191–193. https://doi.org/10.1136/gutjnl-2018-317726
  57. Bhattarai Y. // Neurogastroenterol. Motil. 2018. V. 30. № 6. e13366. https://doi.org/10.1111/nmo.13366
  58. Diallo I., Ho J., Lambert M., Benmoussa A., Husseini Z., Lalaouna D. et al. // PLoS Pathog. 2022. V. 18. № 9. e1010827. https://doi.org/10.1371/journal.ppat.1010827
  59. Yaghoubfar R., Behrouzi A., Ashrafian F., Shahryari A., Moradi H.R., Choopani S. et al. // Sci. Rep. 2020. V. 10. № 1. P. 22119. https://doi.org/10.1038/s41598-020-79171-8
  60. Cuesta C.M., Guerri C., Ureña J., Pascual M. // Int. J. Mol. Sci. 2021. V. 22. № 8. P. 4235. https://doi.org/10.3390/ijms22084235
  61. Rodrigues M., Fan J., Lyon C., Wan M., Hu Y. // Theranostics. 2018. V. 8. № 10. P. 2709–2721. https://doi.org/10.7150/thno.20576
  62. Vdovikova S., Gilfillan S., Wang S., Dongre M., Wai S.N., Hurtado A. // Sci. Rep. 2018. V. 8. № 1. P. 7434. https://doi.org/10.1038/s41598-018-25308-9
  63. O'Donoghue E.J., Krachler A.M. // Cell. Microbiol. 2016. V. 18. № 11. P. 1508–1517. https://doi.org/10.1111/cmi.12655
  64. Lebeer S., Vanderleyden J., De Keersmaecker S.C. // Nat. Rev. Microbiol. 2010. V. 8. № 3. P. 171–84. https://doi.org/10.1038/nrmicro2297
  65. Díaz–Garrido N., Badia J., Baldomà L. // J. Extracell. Vesicles. 2021. V. 10. № 13. e12161. https://doi.org/10.1002/jev2.12161
  66. Wegh C.A.M., Geerlings S.Y., Knol J., Roeselers G., Belzer C. // Int. J. Mol. Sci. 2019. V. 20. № 19. P. 4673. https://doi.org/10.3390/ijms20194673
  67. Molina–Tijeras J.A., Gálvez J., Rodríguez–Cabezas M.E. // Nutrients. 2019. V. 11. № 5. P. 1038. https://doi.org/10.3390/nu11051038
  68. Li M., Zhou H., Yang C., Wu Y., Zhou X., Liu H., Wang Y. // J. Control. Release. 2020. V. 323. P. 253–268. https://doi.org/10.1016/j.jconrel.2020.04.031
  69. Gilmore W.J., Johnston E.L., Zavan L., Bitto N.J., Kaparakis–Liaskos M. // Mol. Immunol. 2021. V. 134. P. 72–85. https://doi.org/10.1016/j.molimm.2021.02.027
  70. Nanou A., Zeune L.L., Bidard F.C., Pierga J.Y., Terstappen L.W.M.M. // Breast Cancer Res. 2020. V. 22. № 1. P. 86. https://doi.org/10.1186/s13058-020-01323-5
  71. Kim O.Y., Dinh N.T., Park H.T., Choi S.J., Hong K., Gho Y.S. // Biomaterials. 2017. V. 113. P. 68–79. https://doi.org/10.1016/j.biomaterials.2016.10.037
  72. Li Y., Wu J., Qiu X., Dong S., He J., Liu J. et al. // Bioact. Mater. 2022. V. 20. P. 548–560. https://doi.org/10.1016/j.bioactmat.2022.05.037
  73. Chen Q., Bai H., Wu W., Huang G., Li Y., Wu M. et al. // Nano Lett. 2020. V. 20. № 1. P. 11–21. https://doi.org/10.1021/acs.nanolett.9b02182
  74. Bachmann M.F., Jennings G.T. // Nat. Rev. Immunol. 2010. V. 10. № 11. P. 787–796. https://doi.org/10.1038/nri2868
  75. Huang W., Zhang Q., Li W., Chen Y., Shu C., Li Q. et al. // Front. Microbiol. 2019. V. 10. P. 1379. https://doi.org/10.3389/fmicb.2019.01379
  76. Macia L., Nanan R., Hosseini-Beheshti E., Grau G.E. // Int. J. Mol. Sci. 2019. V. 21. № 1. P. 107. https://doi.org/10.3390/ijms21010107
  77. Sierra G.V., Campa H.C., Varcacel N.M., Garcia I.L., Izquierdo P.L., Sotolongo P.F. et al. // NIPH. Ann. 1991. V. 14. P. 195–210.
  78. Micoli F, MacLennan C.A. // Semin. Immunol. 2020. V. 50. P. 101433. https://doi.org/10.1016/j.smim.2020.101433
  79. Koeberling O., Delany I., Granoff D.M. // Clin. Vaccine Immunol. 2011. V. 18. № 5. P. 736–42. https://doi.org/10.1128/CVI.00542-10
  80. Peeters C.C., Rümke H.C., Sundermann L.C., Rouppe van der Voort E.M., Meulenbelt J., et al // Vaccine. 1996. V. 14. № 10. P. 1009–1015. https://doi.org/10.1016/0264-410x(96)00001-1
  81. Benne N., van Duijn J., Kuiper J., Jiskoot W., Slütter B. // J. Control. Release. 2016. V. 234. P. 124–134. https://doi.org/10.1016/j.jconrel.2016.05.033
  82. Camacho A.I., Irache J.M., de Souza J., Sánchez–Gómez S., Gamazo C. // Vaccine. 2013. V. 31. № 32. P. 3288–3294. https://doi.org/10.1016/j.vaccine.2013.05.020
  83. Hu C.M., Fang R.H., Luk B.T., Zhang L. // Nat. Nanotechnol. 2013. V. 8. № 12. P. 933–938. https://doi.org/10.1038/nnano.2013.254
  84. Dehaini D., Wei X., Fang R.H., Masson S., Angsantikul P., Luk B.T. et al. // Adv. Mater. 2017. V. 29. № 16. . https://doi.org/10.1002/adma.201606209
  85. Wang D., Dong H., Li M., Cao Y., Yang F., Zhang K., etDai W., Wang C., Zhang X. // ACS Nano. 2018. V. 12. № 6. P. 5241–5252. https://doi.org/10.1021/acsnano.7b08355
  86. Ricci V., Carcione D., Messina S., Colombo G.I., D’Alessandra Y. // Int. J. Mol. Sci. 2020. V. 21. № 23. P. 8959. https://doi.org/10.3390/ijms21238959
  87. Hamady M., Knight R. // Genome Res. 2009. V. 19. № 7. P. 1141–1152. https://doi.org/10.1101/gr.085464.108
  88. Dauros–Singorenko P., Blenkiron C., Phillips A., Swift S. // FEMS Microbiol. Lett. 2018. V. 365. № 5. fny023. https://doi.org/10.1093/femsle/fny023
  89. Poupet C., Chassard C., Nivoliez A., Bornes S. // Front. Nutr. 2020. V. 7. P. 135. https://doi.org/10.3389/fnut.2020.00135
  90. Baenas N., Wagner A.E. // Genes Nutr. 2019. V. 14. P. 14. https://doi.org/10.1186/s12263-019-0641-y
  91. George D.T., Behm C.A., Hall D.H., Mathesius U., Rug M., Nguyen K.C. et al. // PLoS One. 2014. V. 9. № 9. :e106085. https://doi.org/10.1371/journal.pone.0106085

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (881KB)
3.

Download (2MB)
4.

Download (662KB)
5.

Download (202KB)

Copyright (c) 2023 В.М. Чернов, А.А. Музыкантов, Н.Б. Баранова, О.А. Чернова

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».