Extracellular Vesicles of Bacteria Mediate Intercellular Communication: Practical Applications and Biosafety (Review)
- Authors: Chernov V.M.1, Mouzykantov A.A.1, Baranova N.B.1, Chernova O.A.1
-
Affiliations:
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences
- Issue: Vol 59, No 2 (2023)
- Pages: 107-119
- Section: Articles
- URL: https://journals.rcsi.science/0555-1099/article/view/138751
- DOI: https://doi.org/10.31857/S0555109923020046
- EDN: https://elibrary.ru/LLCMZT
- ID: 138751
Cite item
Abstract
Extracellular vesicles, secreted by bacterial cells, are the focus of close attention of researchers. They are enriched with bioactive molecules, mediate the intercellular communication of micro- and macroorganisms, participate in the adaptation of bacteria to stressful conditions, reprogramming target cells, modulating immunoreactivity in higher organisms, changing the structure of microbial communities and ecosystems. The unique properties of bacterial extracellular vesicles (BEVs) open up broad prospects for their practical application – in clinical medicine, agriculture, biotechnology and ecology as diagnostic markers, vaccines, new biological products and means of their delivery. However, to implement the practical applications, a number of problems need to be solved. This review focuses on the ambiguous role of BEVs in the regulation of living systems, the problem of assessing the safety of BEVs and approaches to its solution related to innovative technologies.
About the authors
V. M. Chernov
Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences
Email: muzaleksei@mail.ru
Russia, 420111, Kazan
A. A. Mouzykantov
Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences
Author for correspondence.
Email: muzaleksei@mail.ru
Russia, 420111, Kazan
N. B. Baranova
Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences
Email: muzaleksei@mail.ru
Russia, 420111, Kazan
O. A. Chernova
Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences
Email: muzaleksei@mail.ru
Russia, 420111, Kazan
References
- Woith E., Fuhrmann G., Melzig M.F. // Int. J. Mol. Sci. 2019. V. 20. № 22. P. 5695.https://doi.org/10.3390/ijms20225695
- Bishop D., Work E.J.B.J. // Biochem. J. 1965. V. 96. № 2. P. 567–576. https://doi.org/10.1042/bj0960567
- Knox K., Cullen J., Work E.J.B.J. // Biochem. J. 1967. V. 103. № 1. P. 192–201. https://doi.org/10.1042/bj1030192
- Bladen H.A., Waters J.F. // J. Bacteriol. 1963. V. 86. № 6. P. 1339–1344. https://doi.org/10.1128/jb.86.6.1339-1344.1963
- Avila-Calderón E.D., Ruiz-Palma M.D.S., Aguilera-Arreola M.G., Velázquez-Guadarrama N., Ruiz E.A., Gomez-Lunar Z., et al. // Front Microbiol. 2021. V. 12. P. 557902. https://doi.org/10.3389/fmicb.2021.557902
- Briaud P., Carroll R.K. // Infect. Immun. 2020. V. 88. e00433-20. https://doi.org/10.1128/IAI.00433-20
- Tarashi S., Zamani M.S., Omrani M.D., Fateh A., Moshiri A., Saedisomeolia A. et al. // J. Immunol. Res. 2022. V. 2022. P. 8092170. https://doi.org/10.1155/2022/8092170
- Xie J., Li Q., Haesebrouck F., Van Hoecke L., Vandenbroucke R.E. // Trends Biotechnol. 2022. V. 40. №. 10. P. 1173–1194 https://doi.org/10.1016/j.tibtech.2022.03.005
- Chernov V.M., Mouzykantov A.A., Baranova N.B., Medvedeva E.S., Grygorieva T.Y., Trushin M.V. et al. // J. Proteomics. 2014. V. 110. P. 117–28. https://doi.org/10.1016/j.jprot.2014.07.020
- Gaurivaud P., Ganter S., Villard A., Manso-Silvan L., Chevret D., Boulé C. et al. // PLoS One. 2018. V. 13. № 11. e0208160. https://doi.org/10.1371/journal.pone.0208160
- de Souza L.F.L., Campbell G., Arthuso G.G.S., Gonzaga N.F., Alexandrino C.R., Assao V.S. et al. // Braz. J. Microbiol. 2022. V. 53. № 2. P. 1081–1084. https://doi.org/10.1007/s42770-022-00726-0
- Razin S., Hayflick L. // Biologicals. 2010. V. 38. № 2. P. 183–190. https://doi.org/10.1016/j.biologicals.2009.11.008
- Toyofuku M., Nomura N., Eberl L. // Nat. Rev. Microbiol. 2019. V. 17. №. 1. P. 13–24. https://doi.org/10.1038/s41579-018-0112-2
- Mozaheb N., Mingeot-Leclercq M.-P. // Front. Microbiol. 2020. V. 11. P. 600221. https://doi.org/10.3389/fmicb.2020.600221
- Potter M., Hanson C., Anderson A.J., Vargis E., Britt D.W. // Sci. Rep. 2020. V. 10. № 1. P. 21289. https://doi.org/10.1038/s41598-020-78357-4
- Stanton B.A. // Genes (Basel). 2021. V. 12. № 7. P. 1010. https://doi.org/10.3390/genes12071010
- Koeppen K., Hampton T.H., Jarek M., Scharfe M., Gerber S.A., Mielcarz D.W. et al. // PLoS Pathog. 2016. V. 12. № 6. e1005672. https://doi.org/10.1371/journal.ppat.1005672
- Pita T., Feliciano J.R., Leitão J.H. // Int. J. Mol. Sci. 2020. V. 21. № 24. P. 9634. https://doi.org/10.3390/ijms21249634
- Schatz D., Schleyer G., Saltvedt M.R., Sandaa R.A., Feldmesser E., Vardi A. // ISME J. 2021. V. 15. № 12. P. 3714–3721. https://doi.org/10.1038/s41396-021-01018-5
- Majdalani N., Vanderpool C.K., Gottesman S. // Crit. Rev. Biochem. Mol. Biol. 2005. V. 40. P. 93–113. https://doi.org/10.1080/10409230590918702
- Kumar P., Anaya J., Mudunuri S.B., Dutta A. // BMC Biol. 2014. V. 12. P. 78. https://doi.org/10.1186/s12915-014-0078-0
- Chen X., Sim S., Wurtmann E.J., Feke A., Wolin S.L. // RNA. 2014. V. 20. № 11. P. 1715–1724. https://doi.org/10.1261/rna.047241.114
- Diallo I., Provost P. // Int. J. Mol. Sci. 2020. V. 21. № 5. P. 1627. https://doi.org/10.3390/ijms21051627
- Zhang H., Zhang Y., Song Z., Li R., Ruan H., Liu Q. et al. // Int. J. Med. Microbiol. 2020. V. 310. № 1. P. 151356. https://doi.org/10.1016/j.ijmm.2019.151356
- Музыкантов А.А., Рожина Э.В., Фахруллин Р.Ф., Гомзикова М.О., Золотых М.А., Чернова О.А. и др. // Acta Naturae. 2021. Т. 13. № 4. С. 82–88. https://doi.org/10.32607/actanaturae.11506
- Cecil J.D., O’Brien-Simpson N.M., Lenzo J.C., Holden J.A., Chen Y.Y., Singleton W. et al. // PLoS One. 2016. V. 11. № 4. e0151967. https://doi.org/10.1371/journal.pone.0151967
- Sahr T., Escoll P., Rusniok C., Bui S., Pehau–Arnaudet G., Lavieu G. et al. // Nat. Commun. 2022. V. 13. № 1. P. 762. https://doi.org/10.1038/s41467-022-28454-x
- Turner L., Bitto N.J., Steer D.L., Lo C., D’Costa K., Ramm G. et al. // Front. Immunol. 2018. V. 9. P. 1466. https://doi.org/10.3389/fimmu.2018.01466
- Gottesman S., Storz G. // Cold Spring Harb. Perspect. Biol. 2011. V. 3. a003798. https://doi.org/10.1101/cshperspect.a003798
- Haning K., Cho S.H., Contreras L.M. // Front. Cell Infect. Microbiol. 2014. V. 4. P. 96. https://doi.org/10.3389/fcimb.2014.00096
- Острик А.А., Ажикина Т.Л., Салина Е.Г. // Успехи биологической химии. 2021. Т. 61. С. 229–252. https://doi.org/10.31857/S0555109920040121
- Stork M., Di Lorenzo M., Welch T.J., Crosa J.H. // J. Bacteriol. 2007. V. 189. № 9. P. 3479–88. https://doi.org/10.1128/JB.00619-06
- Michaux C., Verneuil N., Hartke A., Giard J.C. // Microbiol. 2014. V. 160. P. 1007–1019. https://doi.org/10.1099/mic.0.076208-0
- Beisel C.L., Storz G. // Mol. Cell. 2011. V. 41. P. 286–297. https://doi.org/10.1016/j.molcel.2010.12.027
- Stubbendieck R.M., Vargas–Bautista C., Straight P.D. // Front. Microbiol. 2016. V. 7. P. 1234. https://doi.org/10.3389/fmicb.2016.01234
- Ñahui Palomino R.A., Vanpouille C., Costantini P.E., Margolis L. // PLOS Pathogens. 2021. V. 17. № 5. e1009508. https://doi.org/10.1371/journal.ppat.1009508
- Uddin M.J., Dawan J., Jeon G., Yu T., He X., Ahn J. // Microorganisms. 2020. V. 8. № 5. P. 670. https://doi.org/10.3390/microorganisms8050670
- Koeppen K., Nymon A., Barnaby R., Bashor L., Li Z., Hampton T.H. et al. // Proc. Natl. Acad. Sci. USA. 2021. V. 118. № 28. e2105370118. https://doi.org/10.1073/pnas.2105370118
- Muraca M., Putignani L., Fierabracci A., Teti A., Perilongo G. // Discov. Med. 2015. V. 19. № 106. P. 343–348.
- Brameyer S., Plener L., Müller A., Klingl A., Wanner G., Jung K. // J. Bacteriol. 2018. V. 200. № 15. e00740-17. https://doi.org/10.1128/JB.00740-17
- Lee J., Lee E.Y., Kim S.H., Kim D.K., Park K.S., Kim K.P. et al. // Antimicrob. Agents Chemother. 2013. V. 57. № 6. P. 2589–2595. https://doi.org/10.1128/AAC.00522-12
- Schaar V., Uddback I., Nordstrom T., Riesbeck K. // J. Antimicrob. Chemother. 2014. V. 69. № 1. P. 117–120. https://doi.org/10.1093/jac/dkt307
- Toyofuku M., Morinaga K., Hashimoto Y., Uhl J., Shimamura H., Inaba H. et al. // ISME J. 2017. V. 11. P. 1504–1509. https://doi.org/10.1038/ismej.2017.13
- Rueter C., Bielaszewska M. // Front. Cell Infect. Microbiol. 2020. V. 10. P. 91. https://doi.org/10.3389/fcimb.2020.00091
- Zhao Z., Wang L., Miao J., Zhang Z., Ruan J., Xu L. et al. // Sci. Total Environ. 2022. V. 806. P. 151403. https://doi.org/10.1016/j.scitotenv.2021.151403
- Ahmadi Badi S., Moshiri A., Fateh A., Rahimi Jamnani F., Sarshar M., Vaziri F. et al. // Front. Microbiol. 2017. V. 8. P. 1610. https://doi.org/10.3389/fmicb.2017.01610
- Mjelle R., Aass K.R., Sjursen W., Hofsli E., Sætrom P. // iScience. 2020. V. 23. № 5. P. 101131. https://doi.org/10.1016/j.isci.2020.101131
- Rivera J., Cordero R.J., Nakouzi A.S., Frases S., Nicola A., Casadevall A. // Proc. Natl. Acad. Sci. USA. 2010. V. 107. № 44. P. 19002-7. https://doi.org/10.1073/pnas.1008843107
- Zingl F.G., Thapa H.B., Scharf M., Kohl P., Müller A.M., Schild S. // mBio. 2021. V. 12. № 3. e0053421. https://doi.org/10.1128/mBio.00534-21
- Kuipers M.E., Hokke C.H., Smits H.H., Nolte-'t Hoen E.N.M. // Front. Microbiol. 2018. V. 12. № 9. P. 2182. https://doi.org/10.3389/fmicb.2018.02182
- Chang X., Wang S.L., Zhao S.B., Shi Y.H., Pan P., Gu L. et al. // Mediators Inflamm. 2020. V. 2020. P. 1945832. https://doi.org/10.1155/2020/1945832
- Hua Y., Wang J., Huang M., Huang Y., Zhang R., Bu F. et al. // Emerg. Microbes Infect. 2022. V. 11. №1. P. 1281–1292. https://doi.org/10.1080/22221751.2022.2065935
- Sjöström A.E., Sandblad L., Uhlin B.E., Wai S.N. // Sci. Rep. 2015. V. 5. P. 15329. https://doi.org/10.1038/srep15329
- Chernov V.M., Chernova O.A., Mouzykantov A.A., Medvedeva E.S., Baranova N.B., Malygina T.Y. et al. // FEMS Microbiol. Lett. 2018. V. 365. № 18. https://doi.org/10.1093/femsle/fny185
- Marsh J.W., Hayward R.J., Shetty A.C., Mahurkar A., Humphrys M.S., Myers G.S.A. // Brief. Bioinform. 2018. V. 19. № 6. P. 1115–1129. https://doi.org/10.1093/bib/bbx043
- Tulkens J., Vergauwen G., Van Deun J., Geeurickx E., Dhondt B., Lippens L. et al. // Gut. 2020. V. 69. № 1. P. 191–193. https://doi.org/10.1136/gutjnl-2018-317726
- Bhattarai Y. // Neurogastroenterol. Motil. 2018. V. 30. № 6. e13366. https://doi.org/10.1111/nmo.13366
- Diallo I., Ho J., Lambert M., Benmoussa A., Husseini Z., Lalaouna D. et al. // PLoS Pathog. 2022. V. 18. № 9. e1010827. https://doi.org/10.1371/journal.ppat.1010827
- Yaghoubfar R., Behrouzi A., Ashrafian F., Shahryari A., Moradi H.R., Choopani S. et al. // Sci. Rep. 2020. V. 10. № 1. P. 22119. https://doi.org/10.1038/s41598-020-79171-8
- Cuesta C.M., Guerri C., Ureña J., Pascual M. // Int. J. Mol. Sci. 2021. V. 22. № 8. P. 4235. https://doi.org/10.3390/ijms22084235
- Rodrigues M., Fan J., Lyon C., Wan M., Hu Y. // Theranostics. 2018. V. 8. № 10. P. 2709–2721. https://doi.org/10.7150/thno.20576
- Vdovikova S., Gilfillan S., Wang S., Dongre M., Wai S.N., Hurtado A. // Sci. Rep. 2018. V. 8. № 1. P. 7434. https://doi.org/10.1038/s41598-018-25308-9
- O'Donoghue E.J., Krachler A.M. // Cell. Microbiol. 2016. V. 18. № 11. P. 1508–1517. https://doi.org/10.1111/cmi.12655
- Lebeer S., Vanderleyden J., De Keersmaecker S.C. // Nat. Rev. Microbiol. 2010. V. 8. № 3. P. 171–84. https://doi.org/10.1038/nrmicro2297
- Díaz–Garrido N., Badia J., Baldomà L. // J. Extracell. Vesicles. 2021. V. 10. № 13. e12161. https://doi.org/10.1002/jev2.12161
- Wegh C.A.M., Geerlings S.Y., Knol J., Roeselers G., Belzer C. // Int. J. Mol. Sci. 2019. V. 20. № 19. P. 4673. https://doi.org/10.3390/ijms20194673
- Molina–Tijeras J.A., Gálvez J., Rodríguez–Cabezas M.E. // Nutrients. 2019. V. 11. № 5. P. 1038. https://doi.org/10.3390/nu11051038
- Li M., Zhou H., Yang C., Wu Y., Zhou X., Liu H., Wang Y. // J. Control. Release. 2020. V. 323. P. 253–268. https://doi.org/10.1016/j.jconrel.2020.04.031
- Gilmore W.J., Johnston E.L., Zavan L., Bitto N.J., Kaparakis–Liaskos M. // Mol. Immunol. 2021. V. 134. P. 72–85. https://doi.org/10.1016/j.molimm.2021.02.027
- Nanou A., Zeune L.L., Bidard F.C., Pierga J.Y., Terstappen L.W.M.M. // Breast Cancer Res. 2020. V. 22. № 1. P. 86. https://doi.org/10.1186/s13058-020-01323-5
- Kim O.Y., Dinh N.T., Park H.T., Choi S.J., Hong K., Gho Y.S. // Biomaterials. 2017. V. 113. P. 68–79. https://doi.org/10.1016/j.biomaterials.2016.10.037
- Li Y., Wu J., Qiu X., Dong S., He J., Liu J. et al. // Bioact. Mater. 2022. V. 20. P. 548–560. https://doi.org/10.1016/j.bioactmat.2022.05.037
- Chen Q., Bai H., Wu W., Huang G., Li Y., Wu M. et al. // Nano Lett. 2020. V. 20. № 1. P. 11–21. https://doi.org/10.1021/acs.nanolett.9b02182
- Bachmann M.F., Jennings G.T. // Nat. Rev. Immunol. 2010. V. 10. № 11. P. 787–796. https://doi.org/10.1038/nri2868
- Huang W., Zhang Q., Li W., Chen Y., Shu C., Li Q. et al. // Front. Microbiol. 2019. V. 10. P. 1379. https://doi.org/10.3389/fmicb.2019.01379
- Macia L., Nanan R., Hosseini-Beheshti E., Grau G.E. // Int. J. Mol. Sci. 2019. V. 21. № 1. P. 107. https://doi.org/10.3390/ijms21010107
- Sierra G.V., Campa H.C., Varcacel N.M., Garcia I.L., Izquierdo P.L., Sotolongo P.F. et al. // NIPH. Ann. 1991. V. 14. P. 195–210.
- Micoli F, MacLennan C.A. // Semin. Immunol. 2020. V. 50. P. 101433. https://doi.org/10.1016/j.smim.2020.101433
- Koeberling O., Delany I., Granoff D.M. // Clin. Vaccine Immunol. 2011. V. 18. № 5. P. 736–42. https://doi.org/10.1128/CVI.00542-10
- Peeters C.C., Rümke H.C., Sundermann L.C., Rouppe van der Voort E.M., Meulenbelt J., et al // Vaccine. 1996. V. 14. № 10. P. 1009–1015. https://doi.org/10.1016/0264-410x(96)00001-1
- Benne N., van Duijn J., Kuiper J., Jiskoot W., Slütter B. // J. Control. Release. 2016. V. 234. P. 124–134. https://doi.org/10.1016/j.jconrel.2016.05.033
- Camacho A.I., Irache J.M., de Souza J., Sánchez–Gómez S., Gamazo C. // Vaccine. 2013. V. 31. № 32. P. 3288–3294. https://doi.org/10.1016/j.vaccine.2013.05.020
- Hu C.M., Fang R.H., Luk B.T., Zhang L. // Nat. Nanotechnol. 2013. V. 8. № 12. P. 933–938. https://doi.org/10.1038/nnano.2013.254
- Dehaini D., Wei X., Fang R.H., Masson S., Angsantikul P., Luk B.T. et al. // Adv. Mater. 2017. V. 29. № 16. . https://doi.org/10.1002/adma.201606209
- Wang D., Dong H., Li M., Cao Y., Yang F., Zhang K., etDai W., Wang C., Zhang X. // ACS Nano. 2018. V. 12. № 6. P. 5241–5252. https://doi.org/10.1021/acsnano.7b08355
- Ricci V., Carcione D., Messina S., Colombo G.I., D’Alessandra Y. // Int. J. Mol. Sci. 2020. V. 21. № 23. P. 8959. https://doi.org/10.3390/ijms21238959
- Hamady M., Knight R. // Genome Res. 2009. V. 19. № 7. P. 1141–1152. https://doi.org/10.1101/gr.085464.108
- Dauros–Singorenko P., Blenkiron C., Phillips A., Swift S. // FEMS Microbiol. Lett. 2018. V. 365. № 5. fny023. https://doi.org/10.1093/femsle/fny023
- Poupet C., Chassard C., Nivoliez A., Bornes S. // Front. Nutr. 2020. V. 7. P. 135. https://doi.org/10.3389/fnut.2020.00135
- Baenas N., Wagner A.E. // Genes Nutr. 2019. V. 14. P. 14. https://doi.org/10.1186/s12263-019-0641-y
- George D.T., Behm C.A., Hall D.H., Mathesius U., Rug M., Nguyen K.C. et al. // PLoS One. 2014. V. 9. № 9. :e106085. https://doi.org/10.1371/journal.pone.0106085
Supplementary files
