New Inhibitors of Pancreatic α-amylase from Rhaponticum uniflorum

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The basic strategy for the treatment of diabetes mellitus is the control of postprandial glucose levels, and therefore pancreatic α-amylase that hydrolyzes complex carbohydrates is an important enzymatic target for the scientific research. In the present study, an aqueous extract and its ethyl acetate fraction (EAF) from the seeds of Rhaponticum uniflorum had a pronounced inhibitory effect on the activity of human pancreatic α-amylase. Sixteen metabolites were isolated after the chromatographic separation of EAF and characterized as 4-O-, 5-O-, 3,4-di-O-, 3,5-di-O-, 4,5-di-O-caffeoylquinic acid, 6-hydroxyluteolin 7-O-glucoside, rhaunoside B, luteolin 7-O-(6"-O-caffeoyl)-glucoside, luteolin, carthamoside, carthamogenin, tracheloside, isoferuloyl-serotonin, 20-hydroxyecdysone, 2-deoxy-20-hydroxyecdysone and a new natural compound, which was carthamogenin 4-O-(6''-O-acetyl)-β-D-glucopyranoside (6''-O-acetyl-cartamoside). Quantitative HPLC data indicated a different distribution of the individual components between the endosperm and the seed coat. The study of the compounds effect on the activity of human pancreatic α-amylase showed that some flavonoids, caffeoylquinic acids, lignans and serotonin derivatives had a pronounced inhibitory effect. These results support the conclusion that Rhaponticum uniflorum seeds may be a useful natural source for the development of α-amylase inhibitory agents.

About the authors

D. N. Olennikov

Institute of General and Experimental Biology SD RAS

Author for correspondence.
Email: olennikovdn@mail.ru
Russia, 670047, Ulan-Ude

N. I. Kashchenko

Institute of General and Experimental Biology SD RAS

Email: olennikovdn@mail.ru
Russia, 670047, Ulan-Ude

References

  1. Alam S., Sarker M.M.R., Sultana T.N., Chowdhury M.N.R., Rashid M.A., Chaity N.I. et al. // Front. Endocrinol. 2022. V. 13. № 800714. https://doi.org/10.3389/fendo.2022.800714
  2. Sales P.M., Souza P.M., Simeoni L.A., Magalhães P.O., Silveira D. // J. Pharm. Pharm. Sci. 2009. V. 15. P. 141–183. https://doi.org/10.18433/j35s3k
  3. Баторова С.М., Яковлев Г.П., Асеева Т.А. Справочник лекарственных растений традиционной тибетской медицины. Новосибирск: Наука, 2003. 291 с.
  4. Olennikov D.N., Kashchenko N.I. // Chem. Nat. Comp. 2019. V. 55. P. 256–264. https://doi.org/10.1007/s10600-019-02662-2
  5. Olennikov D.N. // Chem. Nat. Comp. 2018. V. 54. P. 751–754. https://doi.org/10.1007/s10600-018-2462-4
  6. Olennikov D.N. // Chem. Nat. Comp. 2019. V. 55. P. 157–159. https://doi.org/10.1007/s10600-019-02642-6
  7. Shantanova L.N., Olennikov D.N., Matkhanov I.E., Gulyaev S.M., Toropova A.A., Nikolaeva I.G., Nikolaev S.M. // Pharmaceuticals. 2021. V. 14. № 1186. https://doi.org/10.3390/ph14111186
  8. Olennikov D.N., Chemposov V.V., Chirikova N.K. // Plants. 2021. V. 10. № 2525. https://doi.org/10.3390/plants10112525
  9. Harmatha J., Buděšínský M., Vokáč K., Pavlik M., Grüner K., Laudová V. // Collect. Czech. Chem. Commun. 2007. V. 72. P. 334–346. https://doi.org/10.1135/cccc20070334
  10. Olennikov D.N., Chirikova N.K., Kashchenko N.I., Gornostai T.G., Selyutina I.Y., Zilfikarov I.N. // Int. J. Mol. Sci. 2017. V. 18. № 2579. https://doi.org/10.3390/ijms18122579
  11. Akabane M., Yamamoto A., Aizawa S., Taga A., Kodama S. // Analyt. Sci. 2014. V. 30. P. 739–743. https://doi.org/10.2116/analsci.30.739
  12. Olennikov D.N., Chirikova N.K. // Chem. Nat. Comp. 2019. V. 55. P. 1032–1038. https://doi.org/10.1007/s10600-019-02887-1
  13. Olennikov D.N., Chirikova N.K., Kashchenko N.I., Nikolaev V.M., Kim S.-W., Vennos C. // Front. Pharmacol. 2018. V. 9. № 756. https://doi.org/10.3389/fphar.2018.00756
  14. Sólyomváry A., Mervai Z., Molnár-Perl I., Boldizsár I. // Nat. Prod. Res. 2014. V. 28. P. 732–739. https://doi.org/10.1080/14786419.2013.879473
  15. Tadera K., Minami Y., Takamatsu K., Matsuoka T. // J. Nutr. Sci. Vitaminol. 2006. V. 52. P. 149–153. https://doi.org/10.3177/jnsv.52.149
  16. Dandekar P.D., Kotmale A.S., Chavan S.R., Kadlag P.P., Sawant S.V., Dhavale D.D., Kumar A.R. // ACS Omega. 2021. V. 6. P. 1780–1786. https://doi.org/10.1021/acsomega.0c00617
  17. Ponnusamy S., Zinjarde S., Bhargava S., Rajamohanan P.R., Ravikumar A. // Food Chem. 2012. V. 135. P. 2638–2642. https://doi.org/10.1016/j.foodchem.2012.06.110
  18. García A.L.L., Olaya M.Q.J.H., Sierra A.J.I. // Rev. Cubana Plant. Med. 2017. V. 22. P. 1–14.
  19. Cansian R.L., Vanin A.B., Orlando T., Piazza S.P., Puton B.M.S., Cardoso R.I. et al. // Braz. J. Biol. 2017. V. 77. P. 155–161. https://doi.org/10.1590/1519-6984.12215
  20. Yamasaki T., Sato M., Mori T., Mohamed A.S.A., Fujii K., Tsukioka J. // J. Nat. Toxins. 2002. V. 11. P. 165–171.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (169KB)
3.

Download (147KB)
4.

Download (175KB)

Copyright (c) 2023 Д.Н. Оленников, Н.И. Кащенко

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies