🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Method of Measuring Geometric Noise in a Matrix of Photoreceptors Using an Intelligent System of Detecting Obstacles in the Path of a Train


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We present an empirical method of measuring geometric noise in matrix photoreceptors included in an intelligent system developed for detecting obstacles in the path of a train. A reference calibration field uses thermal images of crossties. Measurement of geometric noise sensitivity and dark current is based on selected levels of homogeneity in the reference image. The experimental results demonstrated the advantage of the proposed method compared to a conventional two-point calibration.

Sobre autores

Yu. Bekhtin

Ryazan State Radio Engineering University

Autor responsável pela correspondência
Email: yuri.bekhtin@yandex.ru
Rússia, Ryazan

I. Zhelbakov

National Research University – Moscow Power Engineering Institute (MPEI)

Email: yuri.bekhtin@yandex.ru
Rússia, Moscow

A. Ignatov

National Research University – Moscow Power Engineering Institute (MPEI)

Email: yuri.bekhtin@yandex.ru
Rússia, Moscow

P. Krug

National Research University – Moscow Power Engineering Institute (MPEI)

Email: yuri.bekhtin@yandex.ru
Rússia, Moscow

A. Lupachev

National Research University – Moscow Power Engineering Institute (MPEI)

Email: yuri.bekhtin@yandex.ru
Rússia, Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media New York, 2017