Methods for Rapid Selection of Kernel Function Blur Coefficients in a Nonparametric Pattern Recognition Algorithm
- Авторы: Lapko A.V.1,2, Lapko V.A.1,2
-
Учреждения:
- Institute of Computational Modeling, Siberian Branch of the Russian Academy of Sciences
- Siberian State University of Science and Technology
- Выпуск: Том 62, № 4 (2019)
- Страницы: 300-306
- Раздел: General Problems of Metrology and Measurement Technique
- URL: https://journals.rcsi.science/0543-1972/article/view/246705
- DOI: https://doi.org/10.1007/s11018-019-01621-1
- ID: 246705
Цитировать
Аннотация
A fast algorithm is proposed for choosing the coefficients of blur coefficients for kernel functions in a nonparametric estimate of the separating surface equation for a two-alternative pattern recognition problem. The algorithm is based on the results of a study of the asymptotic properties of nonparametric estimates of the decision function in the recognition problem for patterns and the probability densities of the distribution of random variables in classes. We compare the proposed algorithm with the traditional approach based on minimizing the estimated probability of a classification error.
Об авторах
A. Lapko
Institute of Computational Modeling, Siberian Branch of the Russian Academy of Sciences; Siberian State University of Science and Technology
Автор, ответственный за переписку.
Email: lapko@icm.krasn.ru
Россия, Krasnoyarsk; Krasnoyarsk
V. Lapko
Institute of Computational Modeling, Siberian Branch of the Russian Academy of Sciences; Siberian State University of Science and Technology
Email: lapko@icm.krasn.ru
Россия, Krasnoyarsk; Krasnoyarsk
Дополнительные файлы
