Cross-Couplining Reactions of Organometallic Derivatives of Nitronyl Nitroxides with Aryl Halogenides Catalyzed by Palladium Complexes

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Sterically hindered 2-imidazoline-3-oxide-1-oxyls (nitronyl nitroxides) are a class of organic radicals that are widely used in the field of molecular design of magnets and spintronic devices. Over the past 10 years, the main advances in the chemistry and function-oriented synthesis of nitronyl nitroxide radicals have been due to the use of palladium-catalyzed cross-coupling reaction of organometallic derivatives of nitronyl nitroxides with aryl halides. The review presents the development of this field, the problems encountered in the application of the cross-coupling reaction in the chemistry of nitronyl nitroxides, and the solutions found that made it possible to implement the targeted synthesis of organic high-spin systems.

作者简介

I. Zayakin

N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences

ORCID iD: 0000-0002-6639-9515
Moscow, Russia

A. Zimina

N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences

ORCID iD: 0000-0002-2184-8663
Moscow, Russia

E. Tretyakov

N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences

Email: tretyakov@ioc.ac.ru
ORCID iD: 0000-0003-1540-7033
Moscow, Russia

参考

  1. Tretyakov E.V. Preparation and characterization of magnetic and magnetophotonic materials based on organic free radicals in Organic Radicals. Eds. C. Wang, A. Labidi, E. Lichtfouse. Amsterdam, Netherlands: Elsevier, 2024, 61–181. https://doi.org/10.1016/B978-0-443-13346-6.00005-1
  2. Chen Z.X., Li Y., Huang F. Chem. 2021, 7, 288–332. https://doi.org/10.1016/j.chempr.2020.09.024
  3. Tretyakov E.V., Ovcharenko V.I., Terent'ev A.O., Krylov I.B., Magdesieva T.V., Mazhukin D.G., Gritsan N.P. Russ. Chem. Rev. 2022, 91, RCR5025. https://doi.org/10.1070/RCR5025
  4. Shu C., Yang Z., Rajca A. Chem. Rev. 2023, 123, 11954–12003. https://doi.org/10.1021/acs.chemrev.3c00406
  5. Osiecki J.H., Ullman E.F. J. Am. Chem. Soc. 1968, 90, 1078–1079. https://doi.org/10.1021/ja01006a053
  6. Demir S., Jeon I.-R., Long J.R., Harris T.D. Coord. Chem. Rev. 2015, 289–290, 149–176. https://doi.org/10.1016/j.ccr.2014.10.012
  7. Ferrando-Soria J., Vallejo J., Castellano M., Martinez-Lillo J., Pardo E., Cano J., Castro I., Llo-ret F., Ruiz-Garcia R., Julve M. Coord. Chem. Rev. 2017, 339, 17–103. https://doi.org/10.1016/j.ccr.2017.03.004
  8. Ovcharenko V. Metal–Nitroxide Complexes: Synthesis and Magnetostructural Correlations. in Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds. Ed. R.G. Hicks. Chichester, UK: John Wiley and Sons, 2010, 461–506. https://doi.org/10.1002/9780470666975.ch13
  9. Lemaire M.T. Pure Appl. Chem. 2010, 83, 141–149. https://doi.org/10.1351/PAC-CON-10-10-20
  10. Magnetism: Molecules to Materials. Eds. J.S. Miller, M. Drillon. Weinheim, Germany: Wiley-VCH Verlag, 2001–2005, volumes 1–5. https://doi.org/10.1002/9783527620548
  11. Awaga K., Maruyama Y. Chem. Phys. Lett. 1989, 158, 556–558. https://doi.org/10.1016/0009-2614(89)87389-0
  12. Caneschi A., Gatteschi D., Rey P., Sessoli R. Inorg. Chem. 1988, 27, 1756–1761. https://doi.org/10.1021/ic00283a018
  13. Luneau D. Eur. J. Inorg. Chem. 2020, 2020, 597–604. https://doi.org/10.1002/ejic.201901210
  14. Rajca A. Magnetism of Nitroxides. in Nitroxides: Synthesis, Properties and Applications. Eds. O. Ouari, D. Gigmes. Cambridge, UK: The Royal Society of Chemistry, 2021, 359–391. https://doi.org/10.1039/9781788019651-00359
  15. Anghel M., Magnan F., Catingan S.D., McCready M.A., Aawani E., Wong V., Singh D., Fanchini G., Gilroy J.B. J. Polym. Sci. 2020, 58, 309–319. https://doi.org/10.1002/pol.20190082
  16. Hagemann T., Winsberg J., Häupler B., Janoschka T., Gruber J.J, Wild A., Schubert U.S. NPG Asia Mater. 2017, 9, e340. https://doi.org/10.1038/am.2016.195
  17. Tkacheva A., Sun B., Zhang J., Wang G., McDo-nagh A.M. J. Phys. Chem. C. 2021, 125, 2824–2830. https://doi.org/10.1021/acs.jpcc.0c08466
  18. Slota M., Keerthi A., Myers W.K., Tretyakov E., Baumgarten M., Ardavan A., Sadeghi H., Lambert C.J., Narita A., Müllen K., Bogani L. Nature. 2018, 557, 691–695. https://doi.org/10.1038/s41586-018-0154-7
  19. Lee J., Lee E., Kim S., Bang G.S., Shultz D.A., Schmidt R.D., Forbes M.D.E., Lee H. Angew. Chem. Int. Ed. 2011, 50, 4414–4418. https://doi.org/10.1002/anie.201004899
  20. Han H., Wang M., Wang H. New J. Chem. 2014, 38, 914–917. https://doi.org/10.1039/C4NJ00012A
  21. Komatsu H., Matsushita M.M., Yamamura S., Sugawara Y., Suzuki K., Sugawara T.J. J. Am. Chem. Soc. 2010, 132, 4528–4529. https://doi.org/10.1021/ja9109538
  22. Ullman E.F., Osiecki J.H., Boocock D.G.B., Darcy R. J. Am. Chem. Soc. 1972, 94, 7049–7059. https://doi.org/10.1021/ja00775a031
  23. Зуева Е.М., Третьяков Е.В., Фокин С.В., Романенко Г.В., Ткачева А.О., Богомяков А.С., Петрова О.В., Трофимов Б.А., Сагдеев Р.З., Овчаренко В.И. Изв. АН. Сер. хим. 2016, 666–674.
  24. Сагдеев Р.З., Толстиков С.Е., Фокин С.В., Обшарова И.В., Туманов С.В., Вебер С.Л., Романенко Г.В., Богомяков А.С., Федин М.В., Третьяков Е.В., Халкроу M., Овчаренко В.И. Изв. АН. Сер. хим. 2017, 222–230.
  25. Romanov V., Bagryanskaya I., Gritsan N., Gorbunov D., Vlasenko Yu., Yusubov M., Zaytseva E., Luneau D., Tretyakov E. Crystals. 2019, 9, 219. https://doi.org/0.3390/cryst9040219
  26. Tretyakov E., Tkacheva A., Romanenko G., Bogo-myakov A., Stass D., Maryasov A., Zueva E., Tro-fimov B., Ovcharenko V. Molecules. 2020, 25, 1503. https://doi.org/10.3390/molecules25071503
  27. Федюшин П.А., Заякин И.А., Толстиков С.Е., Лалов А.В., Акыева А.Я., Сыроешкин М.А., Романенко Г.В., Третьяков Е.В., Егоров М.П., Овчаренко В.И. Изв. АН. Сер. хим. 2022, 722–734.
  28. Serykh A., Tretyakov E., Fedyushin P., Ugrak B., Dutova T., Lalov A., Korlyukov A., Akyeva A., Syroeshkin M., Bogomyakov A., Romanenko G., Artiukhova N., Egorov M., Ovcharenko V. J. Mol. Struct. 2022, 1269, 133739. https://doi.org/10.1016/j.molstruc.2022.133739
  29. Tretyakov E., Fedyushin P., Bakuleva N., Korlyukov A., Dorovatovskii P., Gritsan N., Dmitriev A., Akyeva A., Syroeshkin M., Stass D., Zykin M., Efimov N., Luneau D. J. Org. Chem. 2023, 88, 10355–10370. https://doi.org/10.1021/acs.joc.2c01793
  30. Kudryavtseva E., Serykh A., Ugrak B., Dutova T., Nasyrova D., Aleshin D., Efimov N., Dorovatovskii P., Bogomyakov A., Fokin S., Romanenko G., Sergeeva A., Tretyakov E. Crystals. 2023, 13, 1655. https://doi.org/10.3390/cryst13121655
  31. Tolstikov S.E., Tretyakov E.V., Gorbunov D.E., Zhurko I.F., Fedin M.V., Romanenko G.V., Bogomyakov A.S., Gritsan N.P., Mazhukin D.G. Chem. Eur. J. 2016, 22, 14598–14604. https://doi.org/10.1002/chem.201602049
  32. Tretyakov E.V., Fedyushin P.A., Panteleeva E.V., Stass D.V., Bagryanskaya I.Yu., Beregovaya I.V., Bogomyakov A.S. J. Org. Chem. 2017, 82, 4179−4185. https://doi.org/10.1021/acs.joc.7b00144.
  33. Zhivetyeva S.I., Zayakin I.A., Bagryanskaya I.Yu., Zaytseva E.V., Bagryanskaya E.G., Tretyakov E.V. Tetrahedron. 2018, 74, 3924–3930. https://doi.org/10.1016/j.tet.2018.05.075
  34. Fedyushin P., Panteleeva E., Bagryanskaya I., Maryunina K., Inoue K., Stass D., Tretyakov E. J. Fluor. Chem. 2019, 217, 1–7. https://doi.org/10.1016/j.jfluchem.2018.10.016
  35. Gurskaya L., Rybalova T., Beregovaya I., Zaytseva E., Kazantsev M., Tretyakov E. J. Fluor. Chem. 2020, 237, 109613. https://doi.org/10.1016/j.jfluchem.2020.109613
  36. Tretyakov E.V., Peshkov R.Yu., Panteleeva E.V., Scrypnik A.S., Stass D.V., Romanenko G.V., Ovcharenko V.I. Tetrahedron Lett. 2016, 57, 2327–2330. https://doi.org/10.1016/j.tetlet.2016.04.070
  37. Romanov V., Vorob’ev A., Bagryanskaya I., Par-khomenko D., Tretyakov E. Aust. J. Chem. 2017, 70, 1317–1320. https://doi.org/10.1071/CH17476
  38. Romanov V.E., Bagryanskaya I.Yu., Gorbunov D.E., Gritsan N.P., Zaytseva E.V., Luneau D., Tretyakov E.V. Crystals. 2018, 8, 334. https://doi.org/10.3390/cryst8090334
  39. Kadilenko E.M., Gritsan N.P., Tretyakov E.V., Fokin S.V., Romanenko G.V., Bogomyakov A.S., Gorbunov D.E., Schollmeyer D., Baumgarten M., Ovcharenko V.I. Dalton Trans. 2020, 49, 16916–6927. https://doi.org/10.1039/D0DT03184D
  40. Заякин И.А., Акыева А.Я., Сыроешкин М.А., Багрянская И.Ю., Третьяков Е.В., Егоров М.П. Изв. АН. Сер. хим. 2023, 213–222.
  41. Beletskaya I.P., Averin A.D. Pure Appl. Chem. 2017, 89, 1413–1428. https://doi.org/10.1515/pac-2016-1110
  42. Beletskaya I.P., Ananikov V.P. Chem. Rev. 2022, 122, 16110–16293. https://doi.org/10.1021/acs.chemrev.1c00836
  43. Beletskaya I.P., Averin A.D. Russ. Chem. Rev. 2021, 90, 1359–1396. https://doi.org/10.1070/RCR4999
  44. Ghosh I., Shlapakov N., Karl T.A., Düker J., Nikitin M., Burykina J.V., Ananikov V.P., König B. Nature. 2023, 619, 87–93. https://doi.org/10.1038/s41586-023-06087-4
  45. Romero F.M., Ziessel R. Tetrahedron Lett. 1999, 40, 1895–1898. https://doi.org/10.1016/S0040-4039(99)00069-6
  46. Catala L., Turek P., Le Moigne J., De Cian A., Kyritsakas N. Tetrahedron Lett. 2000, 41, 1015–1018. https://doi.org/10.1016/S0040-4039(99)02218-2
  47. Третьяков Е.В., Новикова Т.В., Королев В.В., Усов О.М., Василевский С.Ф., Молин Ю. Н. Изв. РАН. Сер. хим. 2000, 1415–1420.
  48. Ullman E.F., Call L., Osiecki J.H. J. Org. Chem. 1970, 35, 3623–3631. https://doi.org/10.1021/jo00836a008
  49. Григорьев И.А., Кирилюк И.А., Стариченко В.Ф., Володарский Л.Б. Изв. АН СССР. Сер. хим. 1989, 1624–1630.
  50. Khramtsov V.V., Weiner L.M., Gogolev A.Z., Grigor'ev I.A., Starichenko V.F., Volodarsky L.B. Magn. Res. Chem. 1986, 24, 199–207. https://doi.org/10.1002/mrc.1260240304
  51. Tretyakov E.V., Romanenko G.V., Ovcharenko V.I. Tetrahedron. 2004, 60, 99–103. https://doi.org/10.1016/j.tet.2003.10.087
  52. Stroh C., Mayor M., von Hanisch C. Tetrahedron Lett. 2004, 45, 9623–9626. https://doi.org/10.1016/j.tetlet.2004.10.140
  53. Третьяков Е.В., Кляцкая С.В., Василевский С.Ф. Изв. АН, сер. хим. 2002, 122–127.
  54. Sviridenko F.B., Stass D.V., Kobzeva T.V., Tretyakov E.V., Klyatskaya S.V., Mshvidobadze E.V., Vasilevsky S.F., Molin Yu.N. J. Am. Chem. Soc. 2004, 126, 2807–2819. https://doi.org/10.1021/ja037157m.
  55. Petunin P.V., Rybalova T.V., Trusova M.E., Uvarov M.N., Kazantsev M.S., Mostovich E.A., Postulka L., Eibisch P., Wolf B., Lang M., Postnikov P.S., Baumgarten M. ChemPlusChem. 2020, 85, 159–162. https://doi.org/10.1002/cplu.201900709
  56. Votkina D.E., Petunin P.V., Zhivetyeva S.I., Bagryanskaya I.Y., Uvarov M.N., Kazantsev M.S., Trusova M.E., Tretyakov E.V., Postnikov P.S. Eur. J. Org. Chem. 2020, 2020, 1996–2004. https://doi.org/10.1002/ejoc.202000044
  57. Miura Y., Ushitani Y., Matsumoto M., Inui K., Teki Y., Takui T., Itoh K. Mol. Cryst. Liq. Cryst. 1993, 232, 135–142. https://doi.org/10.1080/10587259308035707
  58. Stroh C., Mayor M., von Hänisch C. Eur. J. Org. Chem. 2005, 3697–3703. https://doi.org/10.1002/ejoc.200500116
  59. Suzuki S., Nakamura F., Naota T. Org. Lett. 2020, 22, 1350–1354. https://doi.org/10.1021/acs.orglett.9b04655
  60. Овчаренко В.И., Чупахин О.Н., Ковалев И.С., Третьяков Е.В., Романенко Г.В., Стась Д.В. Изв. АН, сер. хим. 2008, 2185–2187.
  61. Chupakhin O.N., Utepova I.A., Varaksin M.V., Tretyakov E.V., Romanenko G.V., Stass D.V., Ovcharenko V.I. J. Org. Chem. 2009, 74, 2870–2872. https://doi.org/10.1021/jo900085s
  62. Suzuki S., Nakamura F., Naota T. Mater. Chem. Front. 2018, 2, 591–596. https://doi.org/10.1039/C7QM00565B
  63. Tanimoto R., Suzuki S., Kozaki M., Okada K. Chem. Lett. 2014, 43, 678–680. https://doi.org/10.1246/cl.131162
  64. Третьяков Е.В., Махнева Т.В., Политанская Л.В., Багрянская И.Ю., Стась Д.В. ЖСХ. 2018, 59, 712–719.
  65. Tanimoto R., Yamada K., Suzuki S., Kozaki M., Okada K. Eur. J. Inorg. Chem. 2018, 1198–1203. https://doi.org/10.1002/ejic.201800038
  66. Suzuki S., Yokoi H., Kozaki M., Kanzaki Y., Shiomi D., Sato K., Takui T., Okada K. Eur. J. Inorg. Chem. 2014, 4740–4744. https://doi.org/10.1002/ejic.201402564
  67. Zhang X., Suzuki S., Kozaki M., Okada K. J. Am. Chem. Soc. 2012, 134, 17866–17868. https://doi.org/10.1021/ja308103g
  68. Zayakin I., Bagryanskaya I., Stass D., Kazantsev M., Tretyakov E. Crystals. 2020, 10, 770. https://doi.org/10.3390/cryst10090770
  69. Suzuki S., Kira S., Kozaki M., Yamamura M., Hase-gawa T., Nabeshima T., Okada K. Dalton Trans. 2017, 46, 2653–2659. https://doi.org/10.1039/C6DT04685A
  70. Yamada K., Zhang X., Tanimoto R., Suzuki S., Kozaki M., Tanaka R., Okada K. Bull. Chem. Soc. Jpn. 2018, 91, 1150–1157. https://doi.org/10.1246/bcsj.20180033
  71. Zayakin I.A., Romanenko G.V., Korlyukov A.A., Tretyakov E.V. Organometallics. 2025, 44, 892–898. https://doi.org/10.1021/acs.organomet.5c00042
  72. Tretyakov E., Okada K., Suzuki S., Baumgarten M., Romanenko G., Bogomyakov A., Ovcharenko V. J. Phys. Org. Chem. 2016, 29, 725–734. https://doi.org/10.1002/poc.3561
  73. Tretyakov E., Gorbunov D., Gritsan N., Keerthi A., Baumgarten M., Schollmeyer D., Ivanov M., Sergeeva A., Fedin M. RSC Adv. 2024, 14, 6178–6189. https://doi.org/10.1039/D4RA00916A
  74. Заякин И.А., Сыроешкин М.А., Шангин П.Г., Корлюков А.А., Дмитриев А.А., Грицан Н.П., Третьяков Е.В. Изв. АН. Сер. хим. 2024, 1216–1228.
  75. Zayakin I.A., Korlyukov A.A., Gorbunov D.E., Gritsan N.P., Akyeva A.Ya., Syroeshkin M.A., Stass D.V., Tretyakov E.V., Egorov M.P. Organo-metallics. 2022, 41, 1710–1720. https://doi.org/10.1021/acs.organomet.2c00200.
  76. Zayakin I., Tretyakov E., Akyeva A., Syroeshkin M., Burykina J., Dmitrenok A., Korlyukov A., Nasyrova D., Bagryanskaya I., Stass D., Ananikov V. Chem. Eur. J. 2023, 29, e202203118. https://doi.org/10.1002/chem.202203118
  77. Zayakin I., Romanenko G., Bagryanskaya I., Ugrak B., Fedin M., Tretyakov E. Molecules. 2023, 28, 7661. https://doi.org/10.3390/molecules28227661.
  78. Ananikov V.P., Beletskaya I.P. Organometallics. 2012, 31, 1595–1604. https://doi.org/10.1021/om201120n
  79. Kashin A.S., Ananikov V.P. J. Org. Chem. 2013, 78, 11117–11125. https://doi.org/10.1021/jo402038p
  80. Haraguchi M., Tretyakov E., Gritsan N., Romanenko G., Gorbunov D., Bogomyakov A., Maryunina K., Suzuki S., Kozaki M., Shiomi D., Sato K., Takui T., Nishihara S., Inoue K., Okada K. Chem. Asian J. 2017, 12, 2929–2941. https://doi.org/10.1002/asia.201701085
  81. Егоров М.П., Анаников В.П., Баскир Э.Г., Боганов С.Е., Богдан В.И, Верещагин А.Н., Виль В.А., Далингер И.Л., Дильман А.Д., Елисеев О.Л., Злотин С.Г., Князева Е.А., Коган В.М, Кононов Л.О., Краюшкин М.М., Крылов В.Б., Кустов Л.М., Левин В.В., Личицкий Б.В., Медведев М.Г., Нифантьев Н.Э., Ракитин О.А., Сахаров А.М., Свитанько И.В., Смирнов Г.А., Стахеев А.Ю., Сыроешкин М.А., Терентьев А.О., Томилов Ю.В., Третьяков Е.В., Трушков И.В., Ферштат Л.Л., Чалый В.А., Ширинян В.З. Изв. АН. Сер. хим. 2024, 2423–2532.
  82. Липунова Г.Н., Федорченко Т.Г., Щепочкин А.В., Чупахин О.Н. Изв. АН. Сер. хим. 2025, 328–353.
  83. Аглиулин К.В., Степанов А.В., Заякин И.А., Яровенко В.Н., Краюшкин М.М., Третьяков Е.В., Насырова Д.И., Айт А.О., Валова Т.М. Изв. АН. Сер. хим. 2024, 3342–3351.
  84. Zayakin I.A., Kurganskii I.V., Keerthi A., Baumgarten M., Dmitriev A.A., Gritsan N.P., Tolstikov S.E., Sagdeev R.Z., Korlyukov A.A., Tretyakov E.V., Fedin M.V. Appl. Magn. Reson. 2025, 56, 125–135. https://doi.org/10.1007/s00723-024-01703-6
  85. Tahara T., Suzuki S., Kozaki M., Shiomi D., Sugisa-ki K., Sato K., Takui T., Miyake Y., Hosokoshi Y., Nojiri H., Okada K. Chem. Eur. J. 2019, 25, 7201–7209. https://doi.org/10.1002/chem.201900513
  86. Yokoyama N., Tanaka N., Fujimoto N., Tanaka R., Suzuki S., Shiomi D., Sato K., Takui T., Kozaki M., Okada K. Chem. Asian J. 2021, 16, 72–79. https://doi.org/10.1002/asia.202001227
  87. Nishinaga T., Kanzaki Y., Shiomi D., Matsuda K., Suzuki S., Okada K. Chem. Eur. J. 2018, 24, 11717–11728. https://doi.org/10.1002/chem.201801712
  88. Tahara T., Suzuki S., Kozaki M., Nishinaga T., Okada K. Bull. Chem. Soc. Jpn. 2018, 91, 1193–1195. https://https://doi.org/10.1246/bcsj.20180078
  89. Gurskaya L., Bagryanskaya I., Amosov E., Kazantsev M., Politanskaya L., Zaytseva E., Bagryanskaya E., Chernonosov A., Tretyakov E. Tetrahedron. 2018, 74, 1942–1950. https://doi.org/10.1016/j.tet.2018.02.062
  90. Stass D., Tretyakov E. Magnetochemistry. 2019, 5, 32. https://doi.org/10.3390/magnetochemistry5020032
  91. Petunin P.V., Votkina D.E., Trusova M.E., Rybalova T.V., Amosov E.V., Uvarov M.N., Postnikov P.S., Kazantsev M.S., Mostovich E.A. New J. Chem. 2019, 43, 15293–15301. https://doi.org/10.1039/C9NJ03361K
  92. Tretyakov E.V., Zhivetyeva S.I., Petunin P.V., Gorbunov D.E., Gritsan N.P., Bagryanskaya I.Y., Bogomyakov A.S., Postnikov P.S., Kazantsev M.S., Trusova M.E., Shundrina I.K., Zaytseva E.V., Parkhomenko D.A., Bagryanskaya E.G., Ovcharenko V.I. Angew. Chem. Int. Ed. 2020, 59, 20704–20710. https://doi.org/10.1002/anie.202010041
  93. Tretyakov E.V., Petunin P.V., Zhivetyeva S.I., Gorbunov D.E., Gritsan N.P., Fedin M.V., Stass D.V., Samoilova R.I., Bagryanskaya I.Yu., Shundrina I.K., Bogomyakov A.S., Kazantsev M.S., Postni-kov P.S., Trusova M.E, Ovcharenko V.I. J. Am. Chem. Soc. 2021, 143, 8164–8176. https://doi.org/10.1021/jacs.1c02938
  94. Shu C., Pink M., Junghoefer T., Nadler E., Rajca S., Casu M.B., Rajca A. J. Am. Chem. Soc. 2021, 143, 5508–5518. https://doi.org/10.1021/jacs.1c01305
  95. Tretyakov E.V., Zayakin I.A., Dmitriev A.A., Fedin M.V., Romanenko G.V., Bogomyakov A.S., Akyeva A.Y., Syroeshkin M.A., Yoshioka N., Gritsan N.P. Chem. Eur. J. 2023, e202303456. https://doi.org/10.1002/chem.202303456
  96. Zayakin I.A., Petunin P.V., Postnikov P.S., Dmitri-ev A.A., Gritsan N.P., Dorovatovskii P., Korlyukov A., Fedin M.V., Bogomyakov A.S., Akyeva A.Ya., Novikov R.A., Shangin P.G., Syroeshkin M.A., Burykina J.V., Tretyakov E.V. J. Am. Chem. Soc. 2024, 146, 13666–13675. https://doi.org/10.1021/jacs.4c04391

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).