Application of CO2 as С1-Synthon in Organic Chemistry: II: Catalytic Synthesis of Cyclic Carbonates (Carbamates) from CO2 and Epoxides (Aziridines)

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

CO2 composes cheap, easily available and practically inexhaustible source of synthetic carbon (C1-synthon). Among the various transformations of carbon dioxide, synthesis of cyclic carbonates from epoxides and carbamates from aziridines can be referred to the priority areas in the development of contemporary chemical synthesis and catalysis. Cyclic carbonates found wide application in modern industry (electrolytes, solvents, reagents, polymers) and their use and production will be constantly increased. At the forefront of research appears the development of effective catalytic processes, allowing carry out the synthesis of carbonates under mild conditions (atmospheric pressure of CO2 or lower, temperature - 25°С) with low catalyst loads, which sustains its high activity for a long time and is affordable. In the current review we analyze the existing directions of research and catalytic systems based on salts of cheap and earth-abundant metals Al3+, Fe2+(3+) and Zn2+ for the preparation of cyclic carbonates from epoxides and carbamates from aziridines.

Авторлар туралы

N. Kuznetsov

A.V. Topchiev Insitute of Petrochemical Synthesis;A.N. Nesmeyanov Institute of Organoelement Compounds RAS

I. Beletskaya

Lomonosov Moscow State University

Email: beletska@org.chem.msu.ru

Әдебиет тізімі

  1. Кузнецов Н.Ю., Максимов А.Л., Белецкая И.П. ЖОрХ. 2022, 58, 1267-1301.
  2. Kuznetsov N.Yu., Maximov A.L., Beletskaya I.P. Russ. J. Org. Chem. 2022, 58, 1681-1711. doi: 10.1134/S1070428022120016
  3. Artz J., Muller T.E., Thenert K., Kleinekorte J., Meys R., Sternberg A., Bardow A., Leitner W. Chem. Rev. 2018, 118, 434-504. doi: 10.1021/acs.chemrev.7b00435
  4. Aresta M., Dibenedetto A., Angelini A. Chem. Rev. 2014, 114, 1709-1742. doi: 10.1021/cr4002758
  5. Dibenedetto A., Angelini A. Adv. Inorg. Chem. 2014, 66, 25-81. doi: 10.1016/B978-0-12-420221-4.00002-0
  6. Bernini R., Mincione E., Barontini M., Crisante F., Fabrizi G., Gambacorta A. Tetrahedron. 2007, 63, 6895-6900. doi: 10.1016/j.tet.2007.04.039
  7. Schäffner B., Holz J., Verevkin S.P., Börner A. ChemSusChem. 2008, 1, 249-253. doi: 10.1002/cssc.200700142
  8. Schäffner B., Holz J., Verevkin S.P., Börner A. Tetrahedron Lett. 2008, 49, 768-771. doi: 10.1016/j.tetlet.2007.11.199
  9. Etacheri V., Marom R., Elazari R., Salitra G., Aurbach D. Energy Environ. Sci. 2011, 4, 3243-3262. doi: 10.1039/C1EE01598B
  10. Ouhib F., Meabe L., Mahmoud A., Grignard B., Thomassin J.-M., Boschini F., Zhu H., Forsyth M., Mecerreyes D., Detrembleur C. ACS Appl. Polym. Mater. 2020, 2, 922-931. doi: 10.1021/acsapm.9b01130
  11. Su C.-C., He M., Amine R., Chen Z., Sahore R., Rago N.D., Amine K. Energy Storage Mater. 2019, 17, 284-292. doi: 10.1016/j.ensm.2018.11.003
  12. Borodin O., Olguin M., Ganesh P., Kent P.R.C., Allen J.L., Henderson W.A. Phys. Chem. Chem. Phys. 2016, 18, 164-175. doi: 10.1039/C5CP05121E
  13. Truong C.C., Mishra D.K., Mishra V. Green Sustainable Process for Chemical and Environmental Engineering and Science. Eds. I.R. Boddula, M.I. Ahamed, A.M. Asiri. Amsterdam: Elsevier, 2021, 253-275. doi: 10.1016/B978-0-12-819721-9.00010-8
  14. Meshksar M., Afshariani F., Rahimpour M.R. Applications of Nanotechnology for Green Synthesis. Nanotechnology in the Life Sciences. Cham: Springer, 2020, 435-455. doi: 10.1007/978-3-030-44176-0_16
  15. Schäffner B., Schäffner F., Verevkin S.P., Borner A. Chem. Rev. 2010, 110, 4554-4581. doi: 10.1021/cr900393d
  16. Beattie C., North M., Villuendas P. Molecules. 2011, 16, 3420-3432. doi: 10.3390/molecules16043420
  17. Morcillo M., North M., Villuendas P. Synthesis. 2012, 12, 1918-1925. doi: 10.1055/s-0030-1260038
  18. Park J.H., Jeon J.Y., Lee J.J., Jang Y., Varghese J.K., Lee B.Y. Macromolecules. 2013, 46, 3301-3308. doi: 10.1021/ma400360w
  19. Guo W., Gomez J.E., Cristofol A., Xie J., Kleij A.W. Angew. Chem. Int. Ed. 2018, 57, 13735-13747. doi: 10.1002/anie.201805009
  20. Liu S., Wang X. Curr. Opin. Green Sust. Chem. 2017, 3, 61-66. doi: 10.1016/j.cogsc.2016.08.003
  21. Arai R., Seto K., Bell A., Sugimoto H. Polym. J. 2018, 50, 301-307. doi: 10.1038/s41428-017-0020-8
  22. Ghasemlou M., Daver F., Ivanova E., Adhikari B. Eur. Polym. J. 2019, 118, 668-684. doi: 10.1016/j.eurpolymj.2019.06.032
  23. Fleischer M., Blattmann H., Mülhaupt R. Green Chem. 2013, 15, 934-942. doi: 10.1039/C3GC00078H
  24. Prasad D., Patil K.N., Chaudhari N.K., Kim H., Nagaraja B.M., Jadhav A.H. Catal. Rev. Sci. Engin. 2022, 64, 356-443. doi: 10.1080/01614940.2020.1812212
  25. Chirik P., Morris R. Acc. Chem. Res. 2015, 48, 2495-2495. doi: 10.1021/acs.accounts.5b00385
  26. D'Elia V., Kleij A.W. Green Chem. Eng. 2022, 3, 210-227. doi: 10.1016/j.gce.2022.01.005
  27. Meléndez J., North M., Pasquale R. Eur. J. Inorg. Chem. 2007, 3323-3326. doi: 10.1002/ejic.200700521
  28. Rulev Yu.A., Gugkaeva Z., Maleev V.I., North M., Belokon Yu.N. Beilstein J. Org. Chem. 2015, 11, 1614-1623. doi: 10.3762/bjoc.11.176
  29. Woo W.H., Hyun K., Kim Y., Ryu J.Y., Lee J., Kim M., Park M.H., Kim Y. Eur. J. Inorg. Chem. 2017, 5372-5378. doi: 10.1002/ejic.201701169
  30. Castro-Gómez F., Salassa G., Kleij A.W., Bo C. Chem. Eur. J. 2013, 19, 6289-6298. doi: 10.1002/chem.201203985
  31. Aida T., Inoue S. J. Am. Chem. Soc. 1983, 105, 1304-1309. doi: 10.1021/ja00343a038
  32. Chen Y., Luo R., Xu Q., Zhang W., Zhou X., Ji H. ChemCatChem. 2017, 9, 767-773. doi: 10.1002/cctc.201601578
  33. Whiteoak C.J., Kielland N., Laserna V., Castro-Gõmez F., Martin E., Escudero-Adán E.C., Bo C., Kleij A.W. Chem. Eur. J. 2014, 20, 2264-2275. doi: 10.1002/chem.201302536
  34. Meléndez D.O., Lara-Sánchez A., Martínez J., Wu X., Otero A., Castro-Osma J.A., North M., Rojas R.S. ChemCatChem. 2018, 10, 2271-2277. doi: 10.1002/cctc.201702014
  35. Kim Y., Hyun K., Ahn D., Kim R., Park M.H., Kim Y. ChemSusChem. 2019, 12, 4211-4220. doi 10.1002/ cssc.201901661
  36. North M., Young C. Catal. Sci. Technol. 2011, 1, 93-99. doi: 10.1039/c0cy00023j
  37. Alvaro M., Baleizao C., Carbonell E., El Ghoul M., García H., Gigante B. Tetrahedron. 2005, 61, 12131-12139. doi: 10.1016/j.tet.2005.07.114
  38. Pascanu V., Miera G.G., Inge A.K., Martín-Matute B. J. Am. Chem. Soc. 2019, 141, 7223-7234. doi: 10.1021/jacs.9b00733
  39. Yaroshevsky A.A. Geochem. Int. 2006, 44, 48-55. doi: 10.1134/S001670290601006X
  40. Lu X.-B., Feng X.-J., He R. Appl. Catal. A Gen. 2002, 234, 25-34. doi: 10.1016/S0926-860X(02)00223-5
  41. Lu X.-B., He R., Bai C.-X. J. Mol. Catal. A Chem. 2002, 186, 1-11. doi: 10.1016/S1381-1169(01)00442-3
  42. North M., Pasquale R. Angew. Chem. Int. Ed. 2009, 48, 2946-2948. doi: 10.1002/anie.200805451
  43. Clegg W., Harrington R.W., North M., Pasquale R. Chem. Eur. J. 2010, 16, 6828-6843. doi: 10.1002/chem.201000030
  44. Meléndez J., North M., Villuendas P. Chem. Commun. 2009, 18, 2577-2579. doi: 10.1039/b900180h
  45. North M., Villuendas P., Young C. Tetrahedron Lett. 2012, 53, 2736-2740. doi: 10.1016/j.tetlet.2012.03.090
  46. Gordon J.E. J. Org. Chem. 1965, 30, 2760-2763. doi: 10.1021/jo01019a060
  47. Tian D., Liu B., Gan Q., Li H., Darensbourg D.J. ACS Catal. 2012, 2, 2029-2035. doi: 10.1021/cs300462r
  48. Castro-Osma J.A., North M., Wu X. Chem. Eur. J. 2016, 22, 2100-2107. doi: 10.1002/chem.201504305
  49. Martínez J., Castro-Osma J.A., Alonso-Moreno C., Rodríguez-Diéguez A., North M., Otero A., Lara-Sánchez A. ChemSusChem. 2017, 10, 1175-1185. doi: 10.1002/cssc.201601370
  50. Ren Y., Jiang O., Zeng H., Mao Q., Jiang H. RSC Adv. 2016, 6, 3243-3249. doi: 10.1039/c5ra24596f
  51. Carvalho P.A., Comerford J.W., Lamb K.J., North M., Reiss P.S. Adv. Synth. Catal. 2019, 361, 345-354. doi 10.1002/ adsc.201801229
  52. Alvaro M., Baleizao C., Carbonell E., El Ghoul M., García H., Gigante B. Tetrahedron. 2005, 61, 12131-12139. doi: 10.1016/j.tet.2005.07.114
  53. Supasitmongkol S., Styring P. Catal. Sci. Technol. 2014, 4, 1622-1630. doi: 10.1039/c3cy01015e
  54. Rintjema J., Epping R., Fiorani G., Martín E., Escudero-Adán E.C., Kleij A.W. Angew. Chem. Int. Ed. 2016, 55, 3972-3976. doi: 10.1002/anie.201511521
  55. Lee Y., Choi J., Kim H. Org. Lett. 2018, 20, 5036-5039. doi: 10.1021/acs.orglett.8b02186
  56. Barbachyn M.R., Ford C.W. Angew. Chem. Int. Ed. 2003, 42, 2010-2023. doi: 10.1002/anie.200200528
  57. Chen Y., Luo R., Xu Q., Zhang W., Zhou X., Ji H. ChemCatChem. 2017, 9, 767-773. doi: 10.1002/cctc.201601578
  58. Xu W., Chen M., Yang Y., Chen K., Li Y., Zhang Z., Luo R. ChemCatChem. 2023, 15, e202201441. doi: 10.1002/cctc.202201441
  59. Qin Y., Guo H., Sheng X., Wang X., Wang F. Green Chem. 2015, 17, 2853-2858. doi: 10.1039/c4gc02310b
  60. Ji D., Lu X., He R. Appl. Catal. A Gen. 2000, 203, 329-333. doi: 10.1016/S0926-860X(00)00500-7
  61. Lu X.B., Wang H., He R. J. Mol. Catal. A Chem. 2002, 186, 33-42. doi: 10.1016/S1381-1169(02)00181-4
  62. Bauer I., Knölker H.-J. Chem. Rev. 2015, 115, 3170-3387. doi: 10.1021/cr500425u
  63. Iron Catalysis in Organic Chemistry: Reactions and Applications. Ed. B. Plietker. Weinheim: Wiley-VCH, 2008.
  64. Wei D., Darcel C. Chem. Rev. 2019, 119, 2550-2610. doi: 10.1021/acs.chemrev.8b00372
  65. Della Monica F., Buonerba A., Capacchione C. Adv. Synth. Catal. 2019, 361, 265-282. doi: 10.1002/adsc.201801281
  66. Whiteoak C.J., Martin E., Belmonte M.M., Benet-Buchholz J., Kleij A.W. Adv. Synth. Catal. 2012, 354, 469-476. doi: 10.1002/adsc.201100752
  67. Taherimehr M., Al-Amsyar S.M., Whiteoak C.J., Kleij A.W., Pescarmona P.P. Green Chem. 2013, 15, 3083-3090. doi: 10.1039/C3GC41303A
  68. Maya E.M., González-Lucas M., Iglesias M. ChemistrySelect. 2017, 2, 9516-9522. doi: 10.1002/slct.201702077
  69. Buonerba A., De Nisi A., Grassi A., Milione S., Capacchione C., Vagin S., Rieger B. Catal. Sci. Technol. 2015, 5, 118-123. doi: 10.1039/C4CY01187B
  70. Della Monica F., Vummaleti S.V.C., Buonerba A., De Nisi A., Monari M., Milione S., Grassi A., Cavallo L., Capacchione C. Adv. Synth. Catal. 2016, 358, 3231-3243. doi: 10.1002/adsc.201600621
  71. Della Monica F., Maity B., Pehl T., Buonerba A., De Nisi A., Monari M., Grassi A., Rieger B., Cavallo L., Capacchione C. ACS Catal. 2018, 8, 6882-6893. doi: 10.1021/acscatal.8b01695
  72. Fuchs M.A., Zevaco T.A., Ember E., Walter O., Held I., Dinjus E., Döring M. Dalton Trans. 2013, 42, 5322-5329. doi: 10.1039/c3dt32961e
  73. Chen F., Liu N., Dai B. ACS Sustain. Chem. Eng. 2017, 5, 9065-9075. doi: 10.1021/acssuschemeng.7b01990
  74. Dengler J.E., Lehenmeier M.W., Klaus S., Anderson C.E., Herdtweck E., Rieger B. Eur. J. Inorg. Chem. 2011, 3, 336-343. doi: 10.1002/ejic.201000861
  75. Cozzolino M., Leo V., Tedesco C., Mazzeo M., Lamberti M. Dalton Trans. 2018, 47, 13229-13238. doi: 10.1039/c8dt03169j
  76. Driscoll O.J., Stewart J.A., McKeown P., Jones M.D. New J. Chem. 2020, 44, 6063-6067. doi: 10.1039/D0NJ00725K
  77. Kang Y.Y., Kim Y., Lee J., Park H.R. Bull. Korean Chem. Soc. 2015, 36, 1296-1299. doi: 10.1002/bkcs.10236
  78. Cuesta-Aluja L., Masdeu-Bultó A.M. ChemistrySelect. 2016, 1, 2065-2070. doi: 10.1002/slct.201600488
  79. Abu-Surrah A.S., Abdel-Halim H.M., Abu-Shehab H.A.N., Al-Ramahi E. Transit. Met. Chem. 2017, 42, 117-122. doi: 10.1007/s11243-016-0113-9
  80. Al-Qaisi F., Genjang N., Nieger M., Repo T. Inorganica Chim. Acta. 2016, 442, 81-85. doi: 10.1016/j.ica.2015.11.023
  81. Andrea K.A., Butler E.D., Brown T.R., Anderson T.S., Jagota D., Rose C., Lee E.M., Goulding S.D., Murphy J.N., Kerton F.M., Kozak C.M. Inorg. Chem. 2019, 58, 11231-11240. doi: 10.1021/acs.inorgchem.9b01909
  82. Taherimehr M., Sertã J.P.C.C., Kleij A.W., Whiteoak C.J., Pescarmona P.P. ChemSusChem. 2015, 8, 1034-1042. doi: 10.1002/cssc.201403323
  83. Alhashmialameer D., Collins J., Hattenhauer K., Kerton F.M. Catal. Sci. Technol. 2016, 6, 5364-5373. doi: 10.1039/c6cy00477f
  84. Mao H.-F., Fu H.-Q., Liu J.-B., Zhao Y. J. Environ. Chem. Ing. 2022, 10, 108629. doi: 10.1016/j.jece.2022.108629
  85. Buchard A., Kember M.R., Sandeman K.G., Williams C.K. Chem. Commun. 2011, 47, 212-214. doi: 10.1039/c0cc02205e
  86. Pappuru S., Shpasser D., Carmieli R., Shekhter P., Jentoft F.C., Gazit O.M. ACS Omega. 2022, 7, 24656-24661. doi: 10.1021/acsomega.2c02488
  87. Zinc Catalysis: Applications in Organic Synthesis. Eds. S. Enthaler, X.-F. Wu. Weinheim: Wiley-VCH, 2015.
  88. Mercadé E., Zangrando E., Claver C., Godard C. ChemCatChem. 2016, 8, 234-243. doi: 10.1002/cctc.201500772
  89. Vignesh Babu H., Muralidharan K. Dalton Trans. 2013, 42, 1238-1248. doi: 10.1039/c2dt31755a
  90. Ma R., He L.N., Zhou Y.B. Green Chem. 2016, 18, 226-231. doi: 10.1039/c5gc01826a
  91. He S., Wang F., Tong W.L., Yiu S.M., Chan M.C.W. Chem. Commun. 2016, 52, 1017-1020. doi: 10.1039/c5cc08794e
  92. Martín C., Whiteoak C.J., Martin E., Martínez Belmonte M., Escudero-Adán E.C., Kleij A.W. Catal. Sci. Technol. 2014, 4, 1615-1621. doi: 10.1039/c3cy01043k
  93. Karame I., Zaher S., Eid N., Christ L. Mol. Catal. 2018, 456, 87-95. doi: 10.1016/j.mcat.2018.07.001
  94. Ju P., Qi W., Guo B., Liu W., Wu Q., Su Q. Catal. Lett. 2022. 153, 2125-2136. doi: 10.1007/s10562-022-04131-y
  95. Ema T., Miyazaki Y., Koyama S., Yano Y., Sakai T. Chem. Commun. 2012, 48, 4489-4491. doi: 10.1039/C2CC30591G
  96. Maeda C., Taniguchi T., Ogawa K., Ema T. Angew. Chem. Int. Ed. 2015, 54, 134-138. doi: 10.1002/anie.201409729
  97. Maeda C., Shimonishi J., Miyazaki R., Hasegawa J.Y., Ema T. Chem. A Eur. J. 2016, 22, 6556-6563. doi: 10.1002/chem.201600164
  98. Chen J., Xu Y., Gan Z., Peng X., Yi X. Eur. J. Inorg. Chem. 2019, 2019, 1733-1739. doi: 10.1002/ejic.201801246
  99. Sobrino S., Navarro M., Fernández-Baeza J., Sánchez-Barba L.F., Garcés A., Lara-Sánchez A., CastroOsma J.A. Dalton Trans. 2019, 48, 10733-10742. doi: 10.1039/c9dt01844a
  100. Kuznetsova S.A., Rulev Y.A., Larionov V.A., Smol'yakov A.F., Zubavichus Y.V., Maleev V.I., Li H., North M., Saghyan A.S., Belokon Y.N. ChemCatChem. 2019, 11, 511-519. doi: 10.1002/cctc.201800908
  101. Cozzolino M., Melchionno F., Santulli F., Mazzeo M., Lamberti M. Eur. J. Inorg. Chem. 2020, 2020, 1645-1653. doi: 10.1002/ejic.202000119
  102. Takaishi K., Nath B.D., Yamada Y., Kosugi H., Ema T. Angew. Chem. Int. Ed. 2019, 58, 9984-9988. doi: 10.1002/anie.201904224
  103. Yang Y., Hayashi Y., Fujii Y., Nagano T., Kita Y., Ohshima T., Okuda J., Mashima K. Catal. Sci. Technol. 2012, 2, 509-513. doi: 10.1039/c1cy00404b
  104. Kumar R., Sahoo S.C., Nanda P.K. Eur. J. Inorg. Chem. 2021, 2021, 1057-1064. doi: 10.1002/ejic.202001
  105. Bousquet B., Martinez A., Dufaud V. ChemCatChem. 2018, 10, 843-848. doi: 10.1002/cctc.201701481
  106. Naveen K., Ji H., Kim T.S., Kim D., Cho D.-H. Appl. Catal. B: Environ. 2021, 280, 119395. doi: 10.1016/j.apcatb.2020.119395
  107. Milani J.L.S., Oliveira I.S., Dos Santos P.A., Valdo A.K.S.M., Martins F.T., Cangussu D., Das Chagas R.P. Cuihua Xuebao/Chin. J. Catal. 2018, 39, 245-249. doi: 10.1016/S1872-2067(17)62992-9
  108. Wang Z., Bu Z., Cao T., Ren T., Yang L., Li W. Polyhedron. 2012, 32, 86-89. doi: 10.1016/j.poly.2011.07.002
  109. Xie Y., Wang T.T., Yang R.X., Huang N.Y., Zou K., Deng W.Q. ChemSusChem. 2014, 7, 2110-2114. doi: 10.1002/cssc.201402162
  110. Lysova A.A., Samsonenko D.G., Dorovatovskii P.V., Lazarenko V.A., Khrustalev V.N., Kovalenko K.A., Dybtsev D.N., Fedin V.P. J. Am. Chem. Soc. 2019, 141, 17260-17269. doi: 10.1021/jacs.9b08322
  111. Jabbari V., Veleta J.M., Zarei-Chaleshtori M., Gardea-Torresdey J., Villagrán D. Chem. Eng. J. 2016, 304, 774-783. doi: 10.1016/j.cej.2016.06.034
  112. Agarwal R.A., Gupta A.K., De D. Cryst. Growth Des. 2019, 19, 2010-2018. doi: 10.1021/acs.cgd.8b01462
  113. Yue Y., Cai P., Xu K., Li H., Chen H., Zhou H.-C., Huang N. J. Am. Chem. Soc. 2021, 143, 18052-18060. doi: 10.1021/jacs.1c06238
  114. Han Q., Qi B., Ren W., He C., Niu J., Duan C. Nat. Commun. 2015, 6, 10007. doi: 10.1038/ncomms10007
  115. Bondarenko G.N., Dvurechenskaya E.G., Ganina O.G., Alonso F., Beletskaya I.P. Appl. Catal. B Environ. 2019, 254, 380-390. doi: 10.1016/j.apcatb.2019.04.024
  116. Bondarenko G.N., Ganina O.G., Lysova A.A., Fedin V.P., Beletskaya I.P. J. CO2 Util. 2021, 53, 101718. doi: 10.1016/j.jcou.2021.101718
  117. Comerford J.W., Ingram I.D.V., North M., Wu X. Green Chem. 2015, 17, 1966-1987. doi: 10.1039/C4GC01719F
  118. Steinbauer J., Spannenberg A., Werner T. Green Chem. 2017, 19, 3769-3779. doi: 10.1039/C7GC01114H
  119. Kumar S., Jain S.L., Sain B. Tetrahedron Lett. 2011, 52, 6957-6959. doi: 10.1016/j.tetlet.2011.10.082
  120. Wu X., Chen C., Guo Z., North M., Whitwood A.C. ACS Catal. 2019, 9, 1895-1906. doi: 10.1021/acscatal.8b04387
  121. Shi F., Deng Y., SiMa T., Peng J., Gu Y., Qiao B. Angew. Chem. Int. Ed. 2003, 42, 3257-3260. doi: 10.1002/anie.200351098
  122. Rehman A., Saleem F., Javed F., Ikhlaq A., Ahmad S.W., Harvey A. J. Environ. Chem. Eng. 2021, 9, 105113. doi: 10.1016/j.jece.2021.105113
  123. Sun J., Wang J., Cheng W., Zhang J., Li X., Zhang S., She Y. Green Chem. 2012, 14, 654-660. doi: 10.1039/C2GC16335G
  124. Jadhav A.H., Thorat G.M., Lee K., Lim A.C., Kang H., Seo J.G. Catal. Today. 2016, 265, 56-67. doi: 10.1016/j.cattod.2015.09.048
  125. Zhou Y., Avila J., Berthet N., Legrand S., Santini C.C., Gomes M.C., Dufaud V. Chem. Commun. 2021, 57, 7922-7925. doi: 10.1039/D1CC02642A
  126. Gomes M.C., Pison L., Červinka C., Padua A. Angew. Chem. Int. Ed. 2018, 57, 11909-11912. doi: 10.1002/anie.201805495
  127. Avila J., Červinka C., Dugas P.-Y., Pádua A.A.H., Costa M. Adv. Mater. Interfaces. 2021, 8, 2001982. doi: 10.1002/admi.202001982
  128. Avila J., Lepre L.F., Santini C.C., Tiano M., Denis-Quanquin S., Szeto K.C., Padua A.A.H., Gomes M.C. Angew. Chem. Int. Ed. 2021, 60, 12876-12882. doi: 10.1002/anie.202100090
  129. Aziridines and Epoxides in Organic Synthesis. Ed. A.K. Yudin. Weinheim: Wiley-VCH, 2006.
  130. Zadsirjan V., Heravi M.M. Curr. Org. Synth. 2018, 15, 3-20. doi: 10.2174/1570179414666170601115831
  131. Sudo A., Morioka Y., Koizumi E., Sanda F., Endo T. Tetrahedron Lett. 2003, 44, 7889-7891. doi: 10.1016/j.tetlet.2003.09.011
  132. Phung C., Pinhas A.R. Tetrahedron Lett. 2010, 51, 4552-4554. doi: 10.1016/j.tetlet.2010.06.110
  133. Wang B., Guo Z., Wei X. J. Fuel Chem. Technol. 2023, 51, 85-100. doi: 10.1016/S1872-5813(22)60055-0
  134. Cao C.-S., Shi Y., Xua H., Zhao B. Chem. Commun. 2021, 57, 7537-7540. doi: 10.1039/d1cc01865e
  135. Bresciani G., Zacchini S., Marchetti F., Pampaloni G. Dalton Trans. 2021, 50, 5351-5359. doi: 10.1039/D1DT00525A
  136. Panza N., Alberti M. Galiè S., Damiano C., Cargnoni F., Trioni M.I., Caselli A. Eur. J. Org. Chem. 2022, e202200908. doi: 10.1002/ejoc.202200908
  137. Sonzini P., Damiano C., Intrieri D., Mancab G., Gallo E. Adv. Synth. Catal. 2020, 362, 2961-2969. doi: 10.1002/adsc.202000175
  138. Sonzini P., Berthet N., Damiano C., Dufaud V. Gallo E. J. Catal. 2022, 414, 143-154. doi: 10.1016/j.jcat.2022.08.036
  139. Cavalleri M., Damiano C., Manca G., Gallo E. Chem. Eur. J. 2023, 29, e202202729. doi: 10.1002/chem.202202729
  140. Hu Y., Yang L., Liu X. Molecules. 2023, 28, 242. doi: 10.3390/molecules28010242
  141. Nayak P., Chandrasekar Murali A., Rao Velpuri V., Chandrasekhar V., Venkatasubbaiah K. Adv. Synth. Catal. 2023, 365, 230-237. doi: 10.1002/adsc.202201253

© Russian Academy of Sciences, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>