Terminal Epoxides Functionalization. Tetraethylammonium Iodide-Catalyzed Meinwald Rearrangement and Synthesis of 1,3-Dioxolan

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A new catalyst for Meinwald rearrangement and synthesis of 1,3-dioxolan is proposed for reactions of terminal epoxides as an example. A highly efficient and selective rearrangement in the presence of catalytic quantities of tetraethylammonium iodide was shown. Excellent yields of acetyl derivatives were obtained at this rearrangement. An anomalous condensation of 4-(3,6-dichloro-9H-carbazol-9-yl)-3-hydroxybutanenitrile with aldehydes and ketones was discovered. This condensation is accompanied by the elimination of water in an alkaline solution and only derivatives of Z-butadienes are formed.

About the authors

A. O Kharaneko

Research Institute of Physical and Organic Chemistry, Southern Federal University

Email: antonhar08@rambler.ru
ORCID iD: 0000-0002-8677-2647
Rostov-on-Don, Russia

O. I Kharaneko

Litvinenko Institute of Physical Organic and Coal Chemistry

ORCID iD: 0000-0003-1105-8227
Donetsk, Russia

References

  1. Mamedova V.L., Khikmatova G.Z., Korshin D.E., Mamedova S.V., Gavrilova E.L., Mamedov V.A. Russ. Chem. Rev. 2022, 91 (11), RCR5049. https://doi.org/10.57634/RCR5049
  2. Lamb J.R., Jung Y., Coates G.W. Org. Chem. Front. 2015, 346–349. https://doi.org/10.1039/c4qo00324a
  3. Jurgens E., Wucher B., Rominger F., Tornroos K.W., Kunz D. Chem. Commun. 2015, 51, 1897–1900. https://doi.org/10.1039/c4cc07154a
  4. Singh G.S., Mollet K., D’Hooghe M., Kimpe N. Chem. Rev. 2012, 113, 1441–1498. https://doi.org/10.1021/cr3003455
  5. Fallah-Mehrjardi M., Kiasat A.R., Niknam Kh. J. Iranian Chem. Soc. https://doi.org/10.1007/s13738-018-1400-5
  6. Bakhtin S.G., Shved E.N., Sinelnikova M.A., Bespalko Yu. N. Russ. J. Org. Chem. 2021, 57, 524–531. https://doi.org/10.31857/S0514749221040042
  7. Xu Ch., Xu J. Org. Biomol. Chem. 2020, 18, 127–134. https://doi.org/10.1039/c9ob02428j
  8. Zhang Yu., Hu B., Chen Yu., Wang Zh. A Europ. J. Chem. 2024, 30 (59), e202402469. https://doi.org/10.1002/chem.202402469
  9. Kharaneko A.O., Pekhtereva T.M., Kharaneko O.I. Russ. J. Org. Chem. 2020, 56 (10), 1677–1684. https://doi.org/10.1134/S1070428020100012
  10. Сiaccio J.A., Stanescu C., Bontemps J. Tetrahedron Lett. 1992, 33, 1431–1434.
  11. Iranpoor N., Shekarriz M. Synth. Commun. 1999, 29, 2249–2254.
  12. Elenkov M.M., Hauer B., Janssen D.B. Adv. Synth. Catal. 2006, 348, 579–585. https://doi.org/10.1002/adsc.200505333
  13. Shaikh Abbas-Alli G., Sivaram S. Chem. Rev. 1996, 96, 951−976.
  14. Paquin А.М., Epoxydverbindungen und Epoxydharze, Springer-Verlag, Bеrlin-Gottingen-Heidelberg, 1958. 963 p.
  15. Vyvyan J.R., Meyer J.A., Meyer K.D. J. Org. Chem. 2003, 68, 9144–9147. https://doi.org/10.1021/jo035112y
  16. Mirkhani V., Tangestaninejad S., Yadollahi B., Alipanah L. Catal. Lett. 2003, 91 (1–2), 129–132. https://doi.org/10.1023/B:CATL.0000006328.46032.a1
  17. Luthra P.M., Kumar N. Mini Rev. Med. Chem. 2021, 21(19), 2929–2956. https://doi.org/10.2174/1389557521666210521221808
  18. Oner S., Bryce M.R. Mater. Chem. Front. 2023, 7, 4304–4338. https://doi.org/10.1039/D3QM00399J
  19. Luthra P.M., Kumar N. Mini Rev. Med. Chem. 2021, 21(19), 2929–2956. https://doi.org/10.2174/1389557521666210521221808
  20. Oner S., Bryce M.R. Mater. Chem. Front. 2023, 7, 4304–4338. https://doi.org/10.1039/D3QM00399J

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).