Synthesis of New Condensed Systems Based on 6,7-Dimethoxy-1-Carbethoxy-4-Spirosubstituted Dihydroisoquinolines

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

By reducing the ethylesters of spirocyclopentane- and spirotetrahydropyranesubstituted 6,7-dimethoxy-dihydroisoquinoline-1-carboxylic acids, the corresponding 1-hydroxymethyl tetrahydroisoquinolines were synthesized, which were converted into oxazoloisoquinolines by reaction with formalin. The interaction of the latter with hydrobromic and concentrated hydrochloric acids led to the products of recrystallization of oxazoloisoquinolines into tetrahydropyranoisoquinolines. The corresponding dioxinoisoquinolines were synthesized by the reaction of spiro-substituted 6,7-dihydroxyisoquinoline-1-methanol with dibromoethane.

About the authors

A. A Aghekyan

The Scientific Technological Centre of Organic and Pharmaceutical Chemistry NAS RA

Email: aaghekyan@mail.ru
ORCID iD: 0000-0001-6151-4951
Yerevan, Armenia

H. A Panosyan

The Scientific Technological Centre of Organic and Pharmaceutical Chemistry NAS RA

ORCID iD: 0000-0001-8311-6276
Yerevan, Armenia

A. S Avagyan

The Scientific Technological Centre of Organic and Pharmaceutical Chemistry NAS RA

ORCID iD: 0000-0002-7148-3666
Yerevan, Armenia

References

  1. Passler U., Knolker H.-J. The Alkaloids: Chemistry and Biology, Elsevier, Amsterdam, 2011, 70, 79.
  2. Машковский М.Д. Лекарственные средства. М.: Новая волна, 2010, 409, 410.
  3. Ivanov I., Nikolova S., Aladjov D., Stefanova I., Zagorche P. Molecules. 2011, 16, 7019–7042. https://doi.org/10.3390/molecules16087019
  4. Kairuki M., Qiu Q., Pan M., Li Q., Zhou J., Ghaleb H., Jiang C. Bioorg. Med. Chem. 2019, 27, 3347–3357. https://doi.org/10.1016/j.bmc.2019.06
  5. Gitto R., DeLuca L., Ferro S., Agnello S., Russo E., DeSarro G., Chimirri A. Chem. Pharm. Bull. 2010, 58, 1602–1605. https://doi.org/10.1248/cpb.58.1602
  6. Глушков В.А., Арапов К.А., Минова О.Н., Исмайлова Н.Г., Сыропятов Б.Я., Шкляев Ю.В. Хим.-фарм. ж. 2006, 40, 18–20. https://doi.org/10.1007/s11094-006-0128-1
  7. Panchaud Ph., Bruyere Th., Blumstein A.-C., Bur D., Chambovey A., Ertel E.A., Gude M., Hubschwerlen C., Jacob L., Kimmerlin Th., Pfeifer L., Seiler P., Ritz D., Rueedi G. J. Med. Chem. 2017, 60, 3755–3777. https://doi.org/10.1021/acs.jmedchem.6b01834
  8. Akinboye E.S., Rosen M.D., Bakare O., Denmeade S.R. Bioorg. Med. Chem. 2017, 25, 6707–6717. https://doi.org/10.1016/j.bmc.2017.11.015
  9. Dyachenko I.V., Dyachenko V.D., Dorovatovskii P.V., Khrustalev V.N., Nenajdenko V.G. Russ. J. Org. Chem. 2024, 60, 1619–1629. https://doi.org/10.1134/S107042802409001X
  10. Bernhard S., Kümmerer N., Urgast D., Hack F., Ungelenk J., Frank A., Schollmeyer D., Nubbemeyer U. Synthesis. 2024, 56, 2537–2548. https://doi.org/10.1055/a-2328-2947
  11. Defois M., Josselin B., Brindeau P., Krämer A., Knapp C., Anizon F., Giraud F., Ruchaud S., Moreau P. Bioorg. Med. Chem. 2024, 100, 117619. https://doi.org/10.1016/j.bmc.2024.117619
  12. Агекян А.А., Аракелян Е.А., Паносян Г.А., Хачатрян А.Г., Маркарян Э.А. ХГС. 2009, 45, 1338–1344.https://doi.org/10.1007/s10593-009-0385-5
  13. Агекян А.А., Паносян Г.А. ЖОрХ. 2022, 58, 1159–1167. https://doi.org/10.1134/S1070428022110045793
  14. Kaufman T.S. Synthesis. 2005, 3, 339–360. https://doi.org/10.1055/s-2005-861793

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).