Mass Spectra of New Heterocycles: XXX. Investigation of 2-(Alkylsulfanyl) Pyridines by Electron Ionization

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The behavior of a representative number of previously unknown 2-(alkylsulfanyl)pyridines obtained from isothiocyanates, acetylene or allene carbonions and alkylating agents through the synthesis and aromatization of 6- (alkylsulfanyl)-2,3-dihydropyridines under electron ionization (70 eV) has been studied for the first time. All the studied compounds form stable molecular ions (M+,Irel21 - 100%), the common direction of primary decay for most compounds is the formation of the [M - H]+ ion. Moreover, for 3-ary(heteroaryl)-substituted pyridines, except for 6-(vinyloxymethyl)-2-(methylsulfanyl)-3-phenylpyridine and 6-methyl-2-(methylsulfanyl)pyridine, this pathway is the main one. Other significant directions of primary fragmentation of M+ of the studied compounds are associated with the degradation of the alkylsulfanyl group, resulting in ions [M - M]+,[M - SH]+,[M - SCH]+,[M - SCH]+,[M - SM]+, or [M - Et]+ depending on the nature and position of substituents in the pyridine ring. The introduction of a substituent (R, OR, SR) into the pyridine molecule, in which R = Alk > Me, causes the appearance of a competing direction of decomposition of M+, associated with the release of an alkene molecule. Fragmentation of molecular ions of 2-(alkylsulfanyl)pyridines containing the OR substituent is determined by the localization of the charge either on the oxygen atom or on the sulfur atom. With an increase in the length of the alkyl substituent (R = Bu, MeCHOEt), along with a simple rupture of bonds, the occurrence of the McLafferty rearrangement is noted. Fragment ions formed during the fragmentation of molecular ions of 3-aryl(heteryl)-containing pyridines are stabilized through rearrangement into polycyclic aromatic structures, which are then practically not destroyed.

About the authors

L. V Klyba

A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences

Email: klyba@irioch.irk.ru
ORCID iD: 0000-0002-5521-3201
Irkutsk, Russian Federation

E. R Sanzheeva

A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences

ORCID iD: 0000-0002-9776-2794
Irkutsk, Russian Federation

N. A Nedolya

A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences

ORCID iD: 0000-0003-2614-7265
Irkutsk, Russian Federation

O. A Tarasova

A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences

ORCID iD: 0000-0003-4895-3217
Irkutsk, Russian Federation

References

  1. Клыба Л.В., Санжеева Е.Р., Недоля Н.А., Тарасова О.А. ЖОрХ. 2025, 61, С. 687–700. https://doi.org/10.1134/S1234567825600816
  2. Henry G.D. Tetrahedron. 2004, 60, 6043-6061. https://doi.org/10.1016/j.tet.2004.04.043
  3. Wagner F.F., Comins D.L. Tetrahedron. 2007, 63, 8065-8082. https://doi.org/10.1016/j.tet.2007.04.100
  4. Sagitullin R.S., Shkil' G.P., Nosonova I.I., Ferber A.A. Chem.Heterocycl.Compd.1996,32,127-140.
  5. Combs G.F., Jr., McClung J.P. The Vitamins: Fundamental Aspects in Nutrition and Health, 5th Ed., Elsevier: Amsterdam, 2017.
  6. Bull J.A., Mousseau J.J., Pelletier G., Charette A.B. Chem.Rev.2012,112,2642-2713. https://doi.org/10.1021/cr200251d
  7. El-Lateef H.M.A., Khalaf M.M., Gouda M., Kandeel M., Amer A.A., Abdelhamid A.A., Drar A.M., Gad M.A.ACS Omega.2023,8,29685-29692. https://doi.org/10.1021/acsomega.3c03831
  8. Lukevits E. Chem.Heterocycl.Compd.1995,31,639-650. https://doi.org/10.1007/BF01169065
  9. Baumann M., Baxendale I.R. Beilstein J. Org. Chem. 2013, 9, 2265-2319. https://doi.org/10.3762/bjoc.9.265
  10. Ling Y., Hao Z.-Y., Liang D., Zhang C.-L., Liu Y.-F., Wang Y. Drug Des.,Devel. Ther.2021,15,4289-4338. https://doi.org/10.2147/DDDT.S329547
  11. Saranya S.N., Namitha T.H., Arun K., Vinod B., Daisy P.A. Int. J. Pharm. Sci. Rev. Res. 2021, 70, Article No.28,185-188. https://doi.org/10.47583/ijpsrr.2021.v70i01.029
  12. Siddiqui N., Ahsan W., Alam M.S., Azad B., Akhtar M.J. Res. J. Pharm. Technol. 2011, 4, 1918-1932.
  13. Altaf A.A., Shahzad A., Gul Z., Rasool N., Badshah A., Lal B., Khan E. J. Drug Des., Med. Chem. 2015, 1, 1-1. https://doi.org/10.11648/j.jddmc.20150101.11
  14. Sahu R., Mishra R., Kumar R., Salahuddin, Majee C., Mazumder A., Kumar A. Mini-Rev. Med. Chem. 2022, 22, 248-272. https://doi.org/10.2174/1389557521666210614162031
  15. Sourav D., Ashok K.S.K., Suraj K.S., Sabnaz K., Nandan S., Subhasis B., Sanjay D. RSC Adv. 2022, 12, 15385-15406. https://doi.org/10.1039/d2ra01571d
  16. Failla M., Lombardo G.W., Orlando P., Fiorito D., Bombonato E., Ronchi P., Passarella D., Fasano V. Eur. J. Org. Chem. 2023, 26, e202300074 (18 pp.). https://doi.org/10.1002/ejoc.202300074
  17. Chandran E.A., Vineesha M., Valooran N.M., Arun K.R. J. Chem. Rev. 2023, 5, 159-182. https://doi.org/10.22034/JCR.366462.1198
  18. Starosotnikov A.M., Bastrakov M.A. Int. J. Mol. Sci. 2023, 24, Article ID 9314. https://doi.org/10.3390/ijms24119314
  19. Islam B., Islam I., Nath N., Emran T.B., Rahman R., Sharma R., Matin M.M. BioMed Res. Int. 2023, 2023, Article ID 9967591 (15 pp.). https://doi.org/10.1155/2023/9967591
  20. Balasubramanian M., Keay J.G. Pyridines and their Benzo Derivatives: Applications. In: Comprehensive Heterocyclic Chemistry II. Eds. Katritzky A.R., Rees C.W., Scriven E.F.V., Elsevier Science Ltd. 1996, 5, 245-300.
  21. McAteer C.H., Balasubramanian M., Murugan R. Pyridines and their Benzo Derivatives: Applications. In: Comprehensive Heterocyclic Chemistry III. Eds. Katritzky A.R., Ramsden C.A., Scriven E.F.V., Taylor R.J.K., Elsevier Science Ltd. 2008, 7, 309-336.
  22. de Ruiter G., Lahav M., van der Boom M.E. Acc. Chem. Res. 2014, 47, 3407-3416. https://doi.org/10.1021/ar500112b
  23. Sadimenko A.P. Adv. Heterocycl. Chem. 2004, 86, 293-343. https://doi.org/10.1016/S0065-2725(03)86005-1
  24. Kwong H.-L., Yeung H.-L., Yeung C.-T., Lee W.-S., Lee C.-S., Wong W.-L. Coord. Chem. Rev. 2007, 251, 2188-2222. https://doi.org/10.1016/j.ccr.2007.03.010
  25. Panda J., Raiguru B.P., Mishra M., Mohapatra S., Nayak S. ChemistrySelect. 2022, 7, Article ID e202103987 (79 pp.). https://doi.org/10.1002/slct.202103987
  26. Arlan F.M., Marjani A.P., Javahershenas R., Khalafy J. New J. Chem. 2021, 45, Article ID 12328. https://doi.org/10.1039/d1nj01801a
  27. Ueno S., Maeda R., Kogure Y., Kuwano R. Chem. Lett. 2023, 52, 148-151. https://doi.org/10.1246/cl.220546
  28. Ciufolini M.A., Chan B.K. Heterocycles. 2007, 74, 101-124. https://doi.org/10.3987/rev-07-sr(w)4
  29. Недоля Н.А. ЖОрХ. 2023, 59, 1319−1350.
  30. Клыба Л.В., Недоля Н.А., Тарасова О.А., Жанчипова Е.Р., Волостных О.Г. ЖОрХ. 2010, 46, 1039−1049.
  31. Клыба Л.В., Недоля Н.А., Жанчипова Е.Р. ЖОрХ. 2008, 44, 135–142. https://doi.org/10.1134/S1070428008010181
  32. Клыба Л.В., Недоля Н.А., Шляхтина Н.И., Жанчипова Е.Р. ЖОрХ. 2005, 41, 1576−1582. https://doi.org/10.1007/s11178-005-0380-y
  33. Клыба Л.В., Недоля Н.А., Тарасова О.А., Санжеева Е.Р. ЖОрХ. 2013, 49, 398−404. https://doi.org/10.1134/S1070428013030123
  34. Клыба Л.В., Недоля Н.А., Санжеева Е.Р., Тарасова О.А. ЖОрХ. 2021, 57, 1669−1683. https://doi.org/10.1134/S107042801210022
  35. Клыба Л.В., Санжеева Е.Р., Недоля Н.А., Тарасова О.А. ЖОрХ. 2024, 60, 5−14. https://doi.org/10.1134/S1070428024120042

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).