A Synthesis of Functionalized 1,2,3,4-Tetrahydropyridines by the Reaction of 3-[(Propan-2-ylsulfanyl)Methyl]Pentane-2,4-Dione with Anilines

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A method for the synthesis of 1,1,1-(6-methyl-1-aryl-1,2,3,4-tetrahydropyridine-3,3,5-triyl)triethanolines was developed by the reaction of 3-[(propan-2-ylsulfanyl)methyl]pentane-2,4-dione with anilines in the presence of catalytic amounts of acetic acid. The reactivity of substituted anilines in the studied reaction, depending on the nature and position of the substituent, decreases in the series: 2,4-Me2-C6H3NH2 > C6H3NH2 = 4-Me-C6H4NH2 = 2-Me-C6H4NH2 > 3-Me-C6H4NH2 = 2-MeO-C6H4NH2 > 4-MeC(O)-C6H4NH2 = 4-Br-C6H4NH2.

About the authors

L. A. Baeva

Ufa Institute of Chemistry, Ufa Federal Researcher Centre of the Russian Academy of Sciences

Email: sulfur@anrb.ru
ORCID iD: 0000-0002-4475-8556
Ufa, Russia

R. M. Nugumanov

Ufa Institute of Chemistry, Ufa Federal Researcher Centre of the Russian Academy of Sciences

ORCID iD: 0000-0001-8649-2680
Ufa, Russia

R. R. Gataullin

Ufa Institute of Chemistry, Ufa Federal Researcher Centre of the Russian Academy of Sciences

ORCID iD: 0000-0003-3269-2729
Ufa, Russia

T. R. Nugumanov

Ufa Institute of Chemistry, Ufa Federal Researcher Centre of the Russian Academy of Sciences

ORCID iD: 0000-0003-3355-7262
Ufa, Russia

References

  1. Esatbeyoglu T., Wagner A.E., Schini-Kerth V.B., Rimbach G. Mol. Nutr. Food Res. 2015, 59, 36-47. https://doi.org/10.1002/mnfr.201400484
  2. Calva-Estrada S.J., Jimenez-Fernandez M., Lugo-Cervantes E. Food Chem.: Molecular Sci. 2022, 4, 100089. https://doi.org/10.1016/j.fochms.2022.100089
  3. Aiello D., Jonas H., Carbone A., Carbone D., Pecoraro C., Tesoriere L., Köhler J., Wünsch B., Diana P. Molecules. 2022, 27, 7423-7441. https://doi.org/10.3390/molecules27217423
  4. Takeoka G.R., Buttery R.G. Food Chem. 2012, 132, 2131-2134. https://doi.org/10.1016/j.foodchem.2011.12.023
  5. Harrison T.J., Dake G.R. J. Org. Chem. 2005, 70, 10872-10874. https://doi.org/10.1021/jo051940a
  6. McAteer C.H., Balasubramanian M., Murugan R. in: Comprehensive Heterocyclic Chemistry II, Eds. Katritzky A.R., Ramsden C.A., Scriven E.F.V., Taylor R.J.K. New York: Elsevier, 2008, 7, 309-336. https://doi.org/10.1016/B978-008044992-0.00606-4
  7. Mateeva N.N., Winfield L.L., Redda K.K. Curr. Med. Chem. 2005, 12, 551-571. https://doi.org/10.2174/0929867053362776
  8. Felpin F.-X., Lebreton J. Curr. Org. Synth. 2004, 1, 83-109. https://doi.org/10.2174/1570179043485420
  9. Lozano G.L., Park H.B., Bravo J.I., Armstrong E.A., Denu J.M., Stabb E.V., Broderick N.A., Crawford J.M., Handelsman J. Appl. Environ. Microbiol. 2019, 85, e03058-18. https://doi.org/10.1128/AEM.03058-18
  10. Paz C., Becerra J., Silva M., Burgos V., Heydenreich M., Schmidt B., Tran T., Vetter I. Nat. Prod. Commun. 2015, 10, 1355-1357. https://doi.org/10.1177/1934578X1501000810
  11. Mokhtary M., Mahooti K. Adv. J. Chem. A. 2024, 7, 163-189. https://doi.org/10.48309/ajca.2024.422013.1436
  12. Zheng G., Smith A.M., Huang X., Subramanian K.L., Siripurapu K.B., Deaciu A., Zhan C.-G., Dwoskin L.P. J. Med. Chem. 2013, 56, 1693-1703. https://doi.org/10.1021/jm301774u
  13. Kaplan A.L., Confair D.N., Kim K., Barros-Alvarez X., Rodriguez R.M., Yang Y., Kweon O.S., Che T., McCrory J.D., Kamber D.N., Phelan J.P., Martins L.C., Pogorelov V.M., DiBerto J.F., Slocum S.T., Huang X.-P., Kumar J.M., Robertson M.J., Panova O., Seven A.B., Wetsel A.Q., Wetsel W.C., Irwin J.J., Skiniotis G., Shoichet B.K., Roth B.L., Ellman J.A. Nature. 2022, 610, 582-591. https://doi.org/10.1038/s41586-022-05258-z
  14. Pavale G., Acharya P., Korgavkar N., Ramana M.M.V. Curr. Comput.-Aided Drug Des. 2022, 18, 414-424. https://doi.org/10.2174/1573409918666220804142753
  15. Watanabe R., Mizoguchi H., Oikawa H., Ohashi H., Watashi K., Oguri H. Bioorg. Med. Chem. 2017, 25, 2851-5855. https://doi.org/10.1016/j.bmc.2017.03.011
  16. Nakao A., Ohkawa N., Nagasaki T., Kagari T., Doi H., Shimozato T., Ushiyama S., Aoki K. Bioorg. Med. Chem. Lett. 2010, 20, 4774-4778. https://doi.org/10.1016/j.bmcl.2010.06.122
  17. Mohsin N., Ahmad M. Turk. J. Chem. 2018, 42, 1191-1216. https://doi.org/10.3906/kim-1709-4
  18. Chang J.W., Zuhl A.M., Speers A.E., Niessen S., Brown S.J., Mulvihill M.M., Fan Y.C., Spicer T.P., Southern M., Scampavia L., Fernandez-Vega V., Dix M.M., Cameron M.D., Hodder P.S., Rosen H., Nomura D.K., Kwon O., Hsu K.-L., Cravatt B.F. ACS Chem. Biol. 2015, 10, 925-932. https://doi.org/10.1021/cb500893q
  19. Dao N.T., Khrustalev V.N., Polyakova E.I., Le A.T. ChemistrySelect. 2022, 7, e202204392. https://doi.org/10.1002/slct.202204392
  20. Henderson E.D., Gangapuram M., Eyunni S.K.V.K., Redda K.K., Wilson-Ardley T. Madridge J. Pharm. Res. 2019, 3, 52-59. https://doi.org/10.18689/mjpr-1000109
  21. Davies C., Dötsch L., Ciulla M.G., Hennes E., Yoshida K., Gasper R., Scheel R., Sievers S., Strohmann C., Kumar K., Ziegler S., Waldmann H. Angew. Chem. Int. Ed. 2022, 61, e202209374. https://doi.org/10.1002/ange.202209374
  22. Vianna J.S., Ramis I.B., Bierhals D., von Groll A., Ramos D.F., Zanatta N., Lourenço M.C., Viveiros M., Almeida da Silva P.E. J. Glob. Antimicrob. Resist. 2019, 17, 296-299. https://doi.org/10.1016/j.ijgar.2018.12.020
  23. Choi S.-H., Im W.-B., Choi S.-H., Cho C.-H., Moon H.-S., Park J.-S., Lee M.-J., Sung H.-J., Moon J.-H., Song S.-H., Lee H.-K., Choi J.-H., Park C.-H., Kim Y.-J., Kim J.-H. Int. J. Pharm. 2018/0086709 (2018). США. C.A. 2018, 168, 387334.
  24. Khan Md.M., Khan S., Saigal, Iqbal S. RSC Adv. 2016, 6, 42045-42061. https://doi.org/10.1039/C6RA0676K
  25. Dudognon Y., Rodriguez J., Constantieux T., Bugaut X. Eur. J. Org. Chem. 2018, 2432-2442. https://doi.org/10.1002/ejoc.201800236
  26. Dao N.T., Nguyen D.T., Nguyen L.M., Tran V.T.T., Do T.T., Le A.T. ChemistrySelect. 2021, 6, 11081-11085. https://doi.org/10.1002/slct.202102963
  27. Kaur G., Devi M., Kumari A., Devi R., Banerjee B. ChemistrySelect. 2018, 3, 9892-9910. https://doi.org/10.1002/slct.201801887
  28. Khan M.M., Khan S., Saigal, Sahoo S.C. ChemistrySelect. 2018, 3, 1371-1380. https://doi.org/10.1002/slct.201702933
  29. Dogra D., Bharti R., Sharma R. Orbital: Electron. J. Chem. 2020, 12, 232-241. https://doi.org/10.17807/orbital.v12i4.1550
  30. Daraei M., Zolfigol M.A., Derakhshan-Panah F., Shiri M., Kruger H.G., Mokhlesi M. J. Iran. Chem. Soc. 2015, 12, 855-861. https://doi.org/10.1007/s13738-014-0548-x
  31. Basirat N., Sajadikhah S.S., Zare A. J. Chem. Res. 2020, 44, 20-24. https://doi.org/10.1177/1747519819883881
  32. Nikoofar K., Shahriyari F. SN Appl. Sci. 2021, 3, 672. https://doi.org/10.1007/s42452-021-04671-9
  33. Sajjadifar S., Rezayati S., Shahriari A., Abbaspour S. Appl. Organometal. Chem. 2017, 32, e4172. https://doi.org/10.1002/aoc.4172
  34. Yu D.-F., Wang Y., Xu P.-F. Tetrahedron. 2011, 67, 3273-3277. https://doi.org/10.1016/j.tet.2011.02.047
  35. Киреева Д.Р., Камалова А.И. ЖОрХ. 2020, 56, 1557–1563. https://doi.org/10.1134/S1070428020100103
  36. Gibadullina N.N., Kireeva D.R., Lobov A.N., Dokichev V.A. J. Fluor. Chem. 2023, 266, 110088. https://doi.org/10.1016/j.jfluchem.2023.110088
  37. Saini A., Kumar S., Sandhu J.S. J. Sci. Ind. Res. 2008, 67, 95-111.
  38. Sharma M.G., Rajani D.P., Patel H.M. R. Soc. Open Sci. 2017, 4, 170006. https://doi.org/10.1098/rsos.170006
  39. Sabitha G., Reddy G.S.K.K., Reddy C.S., Yadav J.S. Tetrahedron Lett. 2003, 44, 4129-4131. https://doi.org/10.1016/S0040-4039(03)00813-X
  40. Баева Л.А., Бикташева Л.Ф., Фатыхов А.А., Ляпина Н.К. ЖОрХ. 2013, 49, 1300-1303. https://doi.org/10.1134/S1070428013090078
  41. Баева Л.А., Гатауллин Р.Р., Нугуманов Р.М. ХГС. 2024, 60, 107-110. https://doi.org/10.1007/s10593-024-03301-7
  42. Egami H., Hamashima Y. Chem. Rec. 2019, 19, 157-171. https://doi.org/10.1002/tcr.201800132
  43. Bassyouni F.A., Abu-Bakr S.M., Rehim M.A. Res. Chem. Intermed. 2012, 38, 283-322. https://doi.org/10.1007/s11164-011-0348-1
  44. Баева Л.А., Нугуманов Р.М., Бикташева Л.Ф., Нугуманов Т.Р., Фатыхов А.А. ЖОрХ. 2019, 55, 531-537.https://doi.org/10.1134/S1070428019040043
  45. Duan Z., Zhao W., Yang F. Int. 10792412 (2010). Китай. С.А. 2010, 153, 311113.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).