Three-Component Coupling of 2-Iodoanilines, Isocyanides, and Carbon Dioxide under Palladium Catalysis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The formation of quinazoline-2,4(1H,3H)-diones via a three-component coupling of ortho-iodoanilines, isocyanides, and CO2 under palladium catalysis was investigated. It was established that the use of the coordinatively unsaturated phosphine complex [PdCl(μ-Cl)(PPh3)2] in DMF at 80°C and atmospheric pressure of CO2 leads to a quantitative yield of the target product within 3 h. The reaction parameters, including solvent choice, temperature conditions, and reagent ratios, were optimized. Key intermediates were identified by ESI-HRMS, indicating a molecular mechanism involving a dynamic equilibrium between monomeric and dimeric forms of palladium complexes. The reaction demonstrated broad substrate scope, including sterically hindered isocyanides. Biological screening revealed that several of the synthesized quinazolinidones exhibit moderate antibacterial activity against methicillin-resistant S. aureus MRSA ATCC 33591.

About the authors

T. K Nguyen

Saint Petersburg University

St. Petersburg, Russia

S. A Katkova

Saint Petersburg University

St. Petersburg, Russia

L. A Kraeva

Pasteur Research Institute of Epidemiology and Microbiology

St. Petersburg, Russia

N. V Rostovsky

Saint Petersburg University

St. Petersburg, Russia

M. A Kinzhalov

Saint Petersburg University

Email: m.kinzhalov@spbu.ru
St. Petersburg, Russia

References

  1. Piotrowska D.G., Andrei G., Schols D., Snoeck R., Łysakowska M. Eur. J. Med. Chem. 2017, 126, 84–100. https://doi.org/10.1016/j.ejmech.2016.10.002
  2. Zhou J., Ji M., Wang X., Zhao H., Cao R., Jin J., Li Y., Chen X., Sheng L., Chen X., Xu B. J. Med. Chem. 2021, 64, 16711–16730. https://doi.org/10.1021/acs.jmedchem.1c01522
  3. Awouters F. Drug Dev. Res. 1985, 6, 263–300. https://doi.org/10.1002/ddr.430060402
  4. Orain D., Tasdelen E., Haessig S., Koller M., Picard A., Dubois C., Lingenhoehl K., Desrayaud S., Floer-sheim P., Carcache D., Urwyler S., Kallen J., Mattes H. ChemMedChem. 2017, 12, 197–201. https://doi.org/10.1002/cmdc.201600467
  5. Geyer M.A., Swerdlow N.R., Lehmann-Masten V.,Teschendorf H.-J., Traut M., Gross G. J. Pharmacol. Exp. Ther. 1999, 290, 716–724. https://doi.org/10.1016/S0022-3565(24)34955-9
  6. Roopan S.M., Maiyalagan T., Khan F.N. Can. J. Chem. 2008, 86, 1019–1025. https://doi.org/10.1139/v08-149
  7. Roopan S.M., Nawaz Khan F., Jin J.S., Senthil Kumar R. Res. Chem. Intermed. 2011, 37, 919–927. https://doi.org/10.1007/s11164-011-0301-3
  8. Gheidari D., Mehrdad M., Maleki S. Sustain. Chem. Pharm. 2022, 27, 100696. https://doi.org/10.1016/j.scp.2022.100696
  9. Baykova S.O., Geyl K.K., Baykov S.V., Boyarskiy V.P. Int. J. Mol. Sci. 2023, 24, 7633. https://doi.org/10.3390/ijms24087633.
  10. Mizuno T., Mihara M., Nakai T., Iwai T., Ito T. Synthesis. 2007, 2007, 2524–2528. https://doi.org/10.1055/s-2007-983808
  11. Mizuno T., Okamoto N., Ito T., Miyata T. Tetrahedron Lett. 2000, 41, 1051–1053. https://doi.org/10.1016/S0040-4039(99)02231-5
  12. Patil Y.P., Tambade P.J., Jagtap S.R., Bhanage B.M. Green Chem. Lett. Rev. 2008, 1, 127–132. https://doi.org/10.1080/17518250802331181
  13. Gheidari D., Mehrdad M., Maleki S. Appl. Organomet. Chem. 2022, 36, e6631. https://doi.org/10.1002/aoc.6631
  14. Xu P., Wang F., Wei T.-Q., Yin L., Wang S.-Y., Ji S.-J. Org. Lett. 2017, 19, 4484–4487. https://doi.org/10.1021/acs.orglett.7b01877
  15. Zhang W.-Z., Li H., Zeng Y., Tao X., Lu X. Chin. J. Chem. 2018, 36, 112–118. https://doi.org/10.1002/cjoc.201700581
  16. Кузнецов Н.Ю., Белецкая И.П. ЖОрХ. 2023, 59, 973–1011.
  17. Kuznetsov N.Y., Beletskaya I.P. Russ. J. Org. Chem. 2023, 59, 1261–1297. https://doi.org/10.1134/S1070428021080018
  18. Zhang K., Zhang W.-Z., Tao X.-Y., Zhang M., Ren W.-M., Lu X.-B. J. Org. Chem. 2020, 85, 11579–11588. https://doi.org/10.1021/acs.joc.0c01717
  19. Sengoden M., North M., Whitwood A.C. ChemSusChem. 2019, 12, 3296–3303. https://doi.org/10.1002/cssc.201901171
  20. Zou Q., Long G., Zhao T., Hu X. Green Chem. 2020, 22, 1134–1138. https://doi.org/10.1039/C9GC03637G
  21. Коломников И.С., Григорян М.К. Усп. хим. 1978, 47, 603–637.
  22. Kolomnikov I.S.,Grigoryan M.K. Russ. Chem. Rev. 1978, 47, 334–353. https://doi.org/10.1070/RC1978v047n04ABEH002222
  23. Virtue K., Fayyaz B., López-Linares F., Mironov O., Ovalles C., Bernskoetter W.H. Chem. Eur. J. 2025, 31, e202403505. https://doi.org/10.1002/chem.202403505
  24. Ren S., Lin S., Ren Z., Wang M., Yang Y., Tang H.-T., Chen P., Zhou L., Pan Y.-M. ACS Sustain. Chem. Eng. 2025, 13, 2001–2010. https://doi.org/10.1021/acssuschemeng.4c07745
  25. Dey T.K., Basu P., Riyajuddin S., Biswas S., Khan A., Ghosh K., Islam S.M. ChemistrySelect. 2020, 5, 10355–10366. https://doi.org/10.1002/slct.202002256
  26. Guo L.-J., Li H.-R., Zhang Z.-Q., Cui H.-Y., Bian G.-G., Zhang Y.-X., Wu Z.-L. Mol. Catal. 2025, 572, 114763. https://doi.org/10.1016/j.mcat.2024.114763
  27. Biswas S., Khatun R., Dolai M., Haque Biswas I., Haque N., Sengupta M., Islam M.S., Islam S.M. New J. Chem. 2020, 44, 141–151. https://doi.org/10.1039/C9NJ04288A
  28. Beletskaya I.P., Cheprakov A.V. Chem. Rev. 2000, 100, 3009-3066. https://doi.org/10.1021/cr9903048
  29. Kinzhalov M.A., Luzyanin K.V., Enabling Catalytic Applications of Aminocarbene Ligands through Rational Design, in Synthesis and Applications in Chemistry and Materials, Ed. A.J.L. Pombeiro, M.F.C. Guedes da Silva, K. Mahmudov. Singapore: World Scientific Publishing Co Pte Ltd. 2024, 3–44.
  30. Chernyshev V.M., Ananikov V.P. ACS Catal. 2022, 12, 1180–1200. https://doi.org/10.1021/acscatal.1c04705
  31. Kinzhalov M.A., Luzyanin K.V., Boyarskiy V.P., Haukka M., Kukushkin V.Y. Organometallics. 2013, 32, 5212–5223. https://doi.org/10.1021/om4007592
  32. Timofeeva S.A., Kinzhalov M.A., Valishina E.A., Luzyanin K.V., Boyarskiy V.P., Buslaeva T.M., Hauk-ka M., Kukushkin V.Y. J. Catal. 2015, 329, 449−456. https://doi.org/10.1016/j.jcat.2015.06.001
  33. Biffis A., Centomo P., Del Zotto A., Zecca M. Chem. Rev. 2018, 118, 2249–2295. https://doi.org/10.1021/acs.chemrev.7b00443
  34. Selander N., Szabo K.J. Chem. Rev. 2011, 111, 2048–2076. https://doi.org/10.1021/cr1002112
  35. Kinzhalov M.A. Russ. J. Gen. Chem. 2024, 94, S120–S128. https://doi.org/10.1134/S1070363224140123
  36. Lyons T.W., Sanford M.S. Chem. Rev. 2010, 110, 1147–1169. https://doi.org/10.1021/cr900184e
  37. Михайлов В.Н., Срокоумов В.Р, Балова И.А. Усп. хим. 2017, 86, 459–473.
  38. Mikhaylov V.N., Sorokoumov V.N., Balova I.A. Russ. Chem. Rev. 2017, 86, 459–473. https://doi.org/10.1070/rcr4715
  39. Miura M. Angew. Chem. Int. Ed. 2004, 43, 2201–2203. https://doi.org/10.1002/anie.200301753
  40. Luzyanin K.V., Tskhovrebov A.G., Carias M.C., Guedes da Silva M.F.C., Pombeiro A.J.L., Kukushkin V.Y. Organometallics. 2009, 28, 6559–6566. https://doi.org/10.1021/om900682v
  41. Boyarskiy V.P., Luzyanin K.V., Kukushkin V.Y. Coord. Chem. Rev. 2012, 256, 2029–2056. https://doi.org/10.1016/j.ccr.2012.04.022
  42. Samoylenko D.E., Lotsman K.A., Rodygin K.S., Ananikov V.P. Chem. Eur. J. 2025, 31, e202403872. https://doi.org/10.1002/chem.202403872
  43. Chernenko A.Y., Baydikova V.A., Kutyrev V.V., Astakhov A.V., Minyaev M.E., Chernyshev V.M., Ananikov V.P. ChemCatChem. 2024, 16, e202301471. https://doi.org/10.1002/cctc.202301471
  44. Patil E.D., Burykina J.V., Eremin D.B., Boiko D.A., Shepelenko K.E., Ilyushenkova V.V., Chernyshev V.M., Ananikov V.P. Inorg. Chem. 2024, 63, 2967–2976. https://doi.org/10.1021/acs.inorgchem.3c03614
  45. Ondar E.E., Kostyukovich A.Y., Burykina J.V., Galushko A.S., Ananikov V.P. Catal. Sci. Technol. 2023, 13, 6022–6040. https://doi.org/10.1039/D3CY00865G
  46. Jödecke M., Pérez-Salado Kamps Á., Maurer G. J. Chem. Eng. Data. 2012, 57, 1249–1266. https://doi.org/10.1021/je300105q
  47. Zhou Z., Ma J.-G., Gao J., Cheng P. Green Chem. 2021, 23, 5456–5460. https://doi.org/10.1039/D1GC01677F
  48. Kinzhalov M.A., Luzyanin K.V., Boyarskiy V.P., Haukka M., Kukushkin V.Y. Organometallics. 2013, 32, 5212–5223.
  49. Mikhaylov V.N., Sorokoumov V.N., Korvinson K.A., Novikov A.S., Balova I.A. Organometallics. 2016, 35, 1684–1697.
  50. Moncada A.I., Manne S., Tanski J.M., Slaughter L.M. Organometallics. 2006, 25, 491–505. https://doi.org/10.1021/om050786f
  51. Михайлов В.Н., Савичева Е.А., Сорокоумов В.Н., ЖOpХ. 2013, 49, 567–571.
  52. Mikhailov V.N., Savicheva E.A., Sorokoumov V.N., Boyarskii V.P. Russ. J. Org. Chem. 2013, 49, 551–554. https://doi.org/10.1134/S107042801304009X
  53. Valishina E.A., Silva M.F.C.G.d., Kinzhalov M.A., Timofeeva S.A., Buslaeva T.M., Haukka M., Pombeiro A.J.L., Boyarskiy V.P., Kukushkin V.Y., Luzyanin K.V. J. Mol. Catal. A: Chem. 2014, 395, 162–171. https://doi.org/10.1016/j.molcata.2014.08.018
  54. Kinzhalov M.A., Luzyanin K.V. Coord. Chem. Rev. 2019, 399, 213014. https://doi.org/10.1016/j.ccr.2019.213014
  55. Eremina A.A., Kinzhalov M.A., Katlenok E.A., Smirnov A.S., Andrusenko E.V., Pidko E.A., Suslonov V.V., Luzyanin K.V. Inorg. Chem. 2020, 59, 2209–2222. https://doi.org/10.1021/acs.inorgchem.9b02833
  56. Кинжалов М.А., Лузянин К.В. ЖНХ. 2022, 67, 54–102.
  57. Kinzhalov M.A., Luzyanin K.V. Russ. J. Inorg. Chem. 2022, 67, 48–90. https://doi.org/10.1134/S0036023622010065
  58. Chernyshev V.M., Khazipov O.V., Eremin D.B., Denisova E.A., Ananikov V.P. Coord. Chem. Rev. 2021, 437, 213860. https://doi.org/10.1016/j.ccr.2021.213860
  59. Liu C.-H., Niazi M.R., Perepichka D.F. Angew. Chem. Int. Ed. 2019, 58, 17312–17321. https://doi.org/10.1002/anie.201910288
  60. Han Y., Tian Y., Li Z., Wang F. Chem. Soc. Rev. 2018, 47, 5165–5176. https://doi.org/10.1039/C7CS00802C
  61. Seki T., Lin X., Yagai S. Asian J. Org. Chem. 2013, 2, 708–724. https://doi.org/10.1002/ajoc.201300025
  62. Pan Y.-Y., Wu Y.-N., Chen Z.-Z., Hao W.-J., Li G., Tu S.-J., Jiang B. J. Org. Chem. 2015, 80, 5764–5770. https://doi.org/10.1021/acs.joc.5b00727
  63. Eremin D.B., Ananikov V.P. Chem. Soc. Rev. 2017, 346, 2–19. https://doi.org/10.1016/j.ccr.2016.12.021
  64. Chernyshev V.M., Denisova E.A., Eremin D.B., Ananikov V.P. Chem. Sci. 2020, 11, 6957–6977. https://doi.org/10.1039/d0sc02629h
  65. Gordeev E.G., Eremin D.B., Chernyshev V.M., Ananikov V.P. Organometallics. 2018, 37, 787–796. https://doi.org/10.1021/acs.organomet.7b00669
  66. Gavrilov G.A., Nguyen T.K., Katkova S.A., Rostov-skii N.V., Rogacheva E.V., Kraeva L.A., Kinzhalov M.A. ChemMedChem. 2025, 20, e202400904. https://doi.org/10.1002/cmdc.202400904
  67. Gee J.C., Fuller B.A., Lockett H.-M., Sedghi G., Robertson C.M., Luzyanin K.V. Chem. Commun. 2018, 54, 9450–9453. https://doi.org/10.1039/C8CC04287J
  68. Kashina M.V., Luzyanin K.V., Katlenok E.A., Kinzhalov M.A. Chem. Eur. J. 2024, 30, e202403264. https://doi.org/10.1002/chem.202403264
  69. Shepelenko K.E., Soliev S.B., Galushko A.S., Chernyshev V.M., Ananikov V.P. Inorg. Chem. Front. 2021, 8, 1511–1527. https://doi.org/10.1039/D0QI01411G
  70. Chernyshev V.M., Astakhov A.V., Chikunov I.E., Tyurin R.V., Eremin D.B., Ranny G.S., Khrustalev V.N., Ananikov V.P. ACS Catal. 2019, 9, 2984–2995. https://doi.org/10.1021/acscatal.8b03683
  71. Galushko A.S., Prima D.O., Burykina J.V., Ananikov V.P. Inorg. Chem. Front. 2021, 8, 620–635. https://doi.org/10.1039/D0QI01133A
  72. Shlapakov N.S., Burykina J.V., Kobelev A.D., Kostyukovich A.Y., Minyaev M.E., Ananikov V.P. Chem. Methods. 2025, e202400087. https://doi.org/10.1002/cmtd.202400087
  73. Kozlov K.S., Boiko D.A., Burykina J.V., Ilyushenko-va V.V., Kostyukovich A.Y., Patil E.D., Ananikov V.P. Nat. Commun. 2025, 16, 2587. https://doi.org/10.1038/s41467-025-56905-8
  74. Boehm J.R., Balch A.L. Inorg. Chem. 1977, 16, 778–785. https://doi.org/10.1021/ic50170a011
  75. Vicente J., Abad J.-A., Martínez-Viviente E., Jones P.G. Organometallics. 2002, 21, 4454–4467. https://doi.org/10.1021/om020380s
  76. Fricke C., Sperger T., Mendel M., Schoenebeck F. Angew. Chem. Int. Ed. 2021, 60, 3355–3366. https://doi.org/10.1002/anie.202011825
  77. Galushko A.S., Kashin A.S., Eremin D.B., Polynski M.V., Pentsak E.O., Chernyshev V.M., Ananikov V.P., Introduction to Dynamic Catalysis and the Interface Between Molecular and Heterogeneous Catalysts, in Nanoparticles in Catalysis. Ed. K. Philippot, A. Roucoux – Hoboken: John Wiley & Sons, Inc. 2021, 13–42. https://doi.org/10.1002/9783527821761.ch2
  78. Galushko A.S., Gordeev E.G., Kashin A.S., Zubavichus Y.V., Ananikov V.P. Faraday Discuss. 2021, 229, 458–474. https://doi.org/10.1039/C9FD00125E
  79. Prima D.O., Kulikovskaya N.S., Galushko A.S., Mironenko R.M., Ananikov V.P. Curr. Opin. Green and Sust. 2021, 31, 100502. https://doi.org/10.1016/j.cogsc.2021.100502
  80. Galushko A.S., Boiko D.A., Pentsak E.O., Eremin D.B., Ananikov V.P. J. Am. Chem. Soc. 2023, 145, 9092–9103. https://doi.org/10.1021/jacs.3c00645
  81. Kashin A.S., Arkhipova D.M., Sahharova L.T., Burykina J.V., Ananikov V.P. ACS Catal. 2024, 14, 5804–5816. https://doi.org/10.1021/acscatal.3c06258
  82. Ananikov V.P., Beletskaya I.P. Organometallics. 2012, 31, 1595–1604. https://doi.org/10.1021/om201120n
  83. Kashin A.S., Ananikov V.P. J. Org. Chem. 2013, 78, 11117–11125. https://doi.org/10.1021/jo402038p
  84. Astakhov A.V., Khazipov O.V., Chernenko A.Y., Pasyukov D.V., Kashin A.S., Gordeev E.G., Khrustalev V.N., Chernyshev V.M., Ananikov V.P. Organometallics. 2017, 36, 1981–1992. https://doi.org/10.1021/acs.organomet.7b00184
  85. Noskowska M., Śliwińska E., Duczmal W. Transition Met. Chem. 2003, 28, 756–759. https://doi.org/10.1023/A:1026064708867
  86. Гаврилов Г.А., Кинжалов М.А. ЖОрХ. 2022, 92, 1742–1753.
  87. Gavrilov G.A., Kinzhalov M.A. Russ. J. Gen. Chem. 2022, 92, 2279-2289. https://doi.org/10.1134/S1070363222110123
  88. Кинжалов М.А., Бороздинова А.М., Боярская И.А., Скрипкин М.Ю., Боярский В.П. ЖОрХ. 2014, 84, 1841–1844.
  89. Kinzhalov M.A., Borozdinova A.M., Boyarskaya I.A., Skripkin M.Y.,Boyarskii V.P. Russ. J. Gen. Chem. 2014, 84, 2138–2141. https://doi.org/10.1134/S1070363214110164
  90. Boyarskaya D.V., Kinzhalov M.A., Suslonov V.V., Boyarskiy V.P. Inorg. Chim. Acta. 2017, 458, 190–198. https://doi.org/10.1016/j.ica.2017.01.008
  91. Sheldrick G. Acta Crystallogr., Sect. A. 2008, 64, 112–122. https://doi.org/10.1107/S0108767307043930
  92. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. J. Appl. Crystallogr. 2009, 42, 339–341. https://doi.org/10.1107/S002188980804272

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).