Synthesis, Structure, Thermochemical and Electrochemical Properties of Azomethines of the Pyridine and Quinoline Series

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A method for obtaining azomethine derivatives of pyridine and quinoline series from the corresponding carbaldehyde and amines allowing the synthesis of target products with high yields (more than 85%) is proposed. The methods of GCMS and TG/DSC-MS were used to determine the pathways of thermal destruction of the obtained derivatives, that proceeds via the cleavage of the hydrocarbon substituent from the imine fragment or the entire azomethine fragment and the formation of cationic forms of 3-phenyl-substituted pyridine and 6-substituted quinoline. Using the method of cyclic voltammetry, the electrochemical properties of the obtained compounds have been studied. It was found that electrochemical reduction/oxidation of the obtained compounds are the irreversible processes leading to fragmentation of the molecules of the obtained azomethines.

About the authors

A. A Perepechay

A.E. Arbuzov Institute of Organic and Physical Chemistry – Subdivision of the FSBS "Kazan Scientific Center of the Russian Academy of Sciences"; Alexander Butlerov Institute of Chemistry of FSAEI HE "Kazan (Volga Region) Federal University"

Kazan, Russia; Kazan, Russia

A. P Krinochkin

FSAEI HE "Ural Federal University, named after the first President of Russia, Boris Yeltsin"; FSBIS I.Ya. Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences

Ekaterinburg, Russia; Ekaterinburg, Russia

A. V Sukhov

A.E. Arbuzov Institute of Organic and Physical Chemistry – Subdivision of the FSBS "Kazan Scientific Center of the Russian Academy of Sciences"; Alexander Butlerov Institute of Chemistry of FSAEI HE "Kazan (Volga Region) Federal University"

Kazan, Russia; Kazan, Russia

E. A Kudryashova

FSAEI HE "Ural Federal University, named after the first President of Russia, Boris Yeltsin"

Ekaterinburg, Russia

A. V Gerasimov

Alexander Butlerov Institute of Chemistry of FSAEI HE "Kazan (Volga Region) Federal University"

Kazan, Russia

V. S Gaviko

FSAEI HE "Ural Federal University, named after the first President of Russia, Boris Yeltsin"; FSBIS M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences

Ekaterinburg, Russia; Ekaterinburg, Russia

D. V Tkachenko

Alexander Butlerov Institute of Chemistry of FSAEI HE "Kazan (Volga Region) Federal University"

Kazan, Russia

D. S Kopchuk

FSAEI HE "Ural Federal University, named after the first President of Russia, Boris Yeltsin"; FSBIS I.Ya. Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences

Ekaterinburg, Russia; Ekaterinburg, Russia

G. V Zyryanov

FSAEI HE "Ural Federal University, named after the first President of Russia, Boris Yeltsin"; FSBIS I.Ya. Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences

Ekaterinburg, Russia; Ekaterinburg, Russia

D. G Yakhvarov

A.E. Arbuzov Institute of Organic and Physical Chemistry – Subdivision of the FSBS "Kazan Scientific Center of the Russian Academy of Sciences"; Alexander Butlerov Institute of Chemistry of FSAEI HE "Kazan (Volga Region) Federal University"

Email: yakhvar@iopc.ru
Kazan, Russia; Kazan, Russia

References

  1. Mukhtar S.S., Hassan A.S., Morsy N.M., Hafez T.S., Hassaneen H.M., Saleh F.M. Egypt. J. Chem. 2021, 11, 6535–6548. https://doi.org/10.21608/ejchem.2021.79736.3920
  2. Zhang R., Wang Y., Zhao Y., Redshaw C., Fedushkin I.L., Wu B., Yang X.-J. Dalton Trans. 2021, 50, 13634–13650. https://doi.org/10.1039/D1DT02120F
  3. Boulechfar C., Ferkous H., Delimi A., Djedoua-ni A., Kahlouche A., Boublia A., Darwish A.S., Lemaoui T., Verma R., Benguerba Y. Inorg. Chem. Commun. 2023, 150, 110451. https://doi.org/10.1016/j.inoche.2023.110451
  4. Juyal V.K, Pathak A., Panwar M., Thakuri S.C., Prakash O., Agrwal A., Nand V.J. Organomet. Chem. 2023, 999, 122825. https://doi.org/10.1016/j.jorganchem.2023.122825
  5. Sandhu Q.-U.-A., Pervaiz M., Majid A., Younas U., Saeed Z., Ashraf A., Khan R.R.M., Ullah S., Ali F., Jelani S. J. Coord. Chem. 2023, 76, 1094–1118. https://doi.org/10.1080/00958972.2023.2226794
  6. Sonawane H.R., Vibhute B.T., Aghav B.D., Deore J.V., Patil S.K. Eur. J. Med. Chem. 2023, 258, 115549. https://doi.org/10.1016/j.ejmech.2023.115549
  7. Catalano A., Sinicropi M.S., Iacopetta D., Ceramella J., Mariconda A., Rosano C., Scali E., Saturnino C., Longo P. Appl. Sci. 2021, 11, 6027. https://doi.org/10.3390/app11136027
  8. Ghanghas P., Choudhary A., Kumar D., Poonia K. Inorg. Chem. Commun. 2021, 130, 108710. https://doi.org/10.1016/j.inoche.2021.108710
  9. Kumar M., Singh A.K., Singh A.K., Yadav R.K., Singh S., Singh A.P., Chauhan A. Coord. Chem. Rev. 2023, 488, 215176. https://doi.org/10.1016/j.ccr.2023.215176
  10. Podolski-Renić A., Čipak Gašparović A., Valente A., López Ó., Bormio Nunes J.H., Kowol C.R., Heffeter P., Filipović N.R. Eur. J. Med. Chem. 2024, 270, 116363. https://doi.org/10.1016/j.ejmech.2024.116363
  11. Ashraf T., Ali B., Qayyum H., Haroone M.S., Shabbir G. Inorg. Chem. Commun. 2023, 150, 110449. https://doi.org/10.1016/j.inoche.2023.110449
  12. Liang M.-R., Du X., Lin J., Rong N., Zhan X., Mao X., Zhuang H., Niu T., Yin Q. J. Am. Chem. Soc. 2025, 147, 4239–4248. https://doi.org/10.1021/jacs.4c14200
  13. Прохоров А.М., Кожевников А.М. ХГС. 2012, 8, 1237–1261.
  14. Prokhorov A.M., Kozhevnikov D.N. Chem. Heterocycl. Compd. 2012, 8, 1153–1176. https://doi.org/10.1007/s10593-012-1117-9
  15. Zhang F.-G., Chen Z., Tang X., Ma J.-A. Chem. Rev. 2021, 121, 14555–14593. https://doi.org/10.1021/acs.chemrev.1c00611
  16. Krinochkin A.P., Kopchuk D.S., Chepchugov N.V., Kim G.A., Kovalev I.S., Rahman M., Zyryanov G.V., Majee A., Rusinov V.L., Chupakhin O.N. Chin. Chem. Lett. 2017, 28, 1099–1103. https://doi.org/10.1016/j.cclet.2016.12.043
  17. Guo W., Liu Z.-J., Wu F., Luo Y.-Z., Yao Z.-J. Appl. Organomet. Chem. 2022, 36, e6808. https://doi.org/10.1002/aoc.6808
  18. Gonzalez M.A., Carrington S.J., Fry N.L., Martinez J.L., Mascharak P.K. Inorg Chem. 2012, 51, 11930–11940. https://doi.org/10.1021/ic3018216
  19. Tran Q.S., Dang V.L., Nguyen H.D. Tap Chi Hoa Hoc. 1983, 21, 22–26.
  20. CrysAlisPro, version 1.171.39.38a, Data Collection, Reduction and Correction Program, Rigaku Oxford Diffraction, 2017.
  21. Sheldrick G.M. Acta Crystallogr. A. 2015, A71, 3–8. https://doi.org/10.1107/S2053273314026370
  22. Sheldrick G.M. Acta Crystallogr. С. 2015, C71, 3–8. https://doi.org/10.1107/S2053229614024218
  23. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. J. Appl. Cryst. 2009, 42. 339–341. https://doi.org/10.1107/S0021889808042726

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).