New (2,2′-BI)Pyridines Substituted by Higher Amines Fragments, Synthesis and Properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An effective synthetic approach to (2,2′-bi)pyridines containing higher amine fragments in the alpha position via their 1,2,4-triazine precursors has been proposed; reactions occurring in the absence of a solvent have been used, among other things. The photophysical properties of the new compounds have been studied; in acetonitrile solutions the latter have shown absolute photoluminescence quantum yields of up to 83.2%.

About the authors

A. Rammohan

Ural Federal University

Yekaterinburg, Russia

G. A Kim

Ural Federal University; Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences

Yekaterinburg, Russia; Yekaterinburg, Russia

A. P Krinochkin

Ural Federal University; Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences

Yekaterinburg, Russia; Yekaterinburg, Russia

Ya. K Shtaitz

Ural Federal University; Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences

Email: iaroslav.shtaits@urfu.ru
Yekaterinburg, Russia; Yekaterinburg, Russia

S. E Vatolina

Ural Federal University

Yekaterinburg, Russia

A. V Baklykov

Ural Federal University; Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences

Yekaterinburg, Russia; Yekaterinburg, Russia

T. A Tseitler

Ural Federal University

Yekaterinburg, Russia

D. S Kopchuk

Ural Federal University; Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences

Yekaterinburg, Russia; Yekaterinburg, Russia

G. V Zyryanov

Ural Federal University; Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences

Yekaterinburg, Russia; Yekaterinburg, Russia

References

  1. Guda M.R., Valieva M.I., Kopchuk D.S., Aluru R., Khasanov A.F., Taniya O.S., Novikov A.S., Zyryanov G.V., Ranu B.C. J. Fluoresc. 2024, 34, 579–586. https://doi.org/10.1007/s10895-023-03304-1
  2. Crust E.J., Clarke A.J., Deeth R.J., Mortona C., Scott P. Dalton Trans. 2004, 4050–4058. https://doi.org/10.1039/B413023E
  3. Holzhacker C., Calhorda M.J., Gil A., Carvalho M.D., Ferreira L.P., Stöger B., Mereiter K., Weil M., Müller D., Weinberger P., Pittenauer E., Allmaiere G., Kirchner K. Dalton Trans. 2014, 43, 11152–11164. https://doi.org/10.1039/C4DT00186A
  4. Borshch N.A., Ageeva L.S., Frolova A.Y. Russ. J. Phys. Chem. 2019, 93, 828–834. https://doi.org/10.1134/S0036024419050066
  5. Vardar D., Ocak H., Kilic H.A., Jeannin O., Camerel F., Eran B.B. Liquid Crystals. 2021, 48, 850–861. https://doi.org/10.1080/02678292.2020.1825841
  6. L.-K. Ong, S.-T. Ha, G.-Y. Yeap, H.-C. Lin. Liquid Crystals. 2108, 45, 1574–1584. https://doi.org/10.1080/02678292.2018.1455225
  7. Karanlık G., Ocak H., Eran B.B. J. Mol. Struct. 2019, 1198, art. № 126930. https://doi.org/10.1016/j.molstruc.2019.126930
  8. Прохоров А.М., Кожевников А.М. ХГС. 2012, 1237–1261.
  9. Prokhorov A.M., Kozhevnikov D.N. Chem. Heterocycl. Compd. 2012, 48, 1153–1176. https://doi.org/10.1007/s10593-012-1117-9.
  10. Zhang F.-G., Chen Z., Tang X., Ma J.-A. Chem. Rev. 2021, 121, 14555–14593. https://doi.org/10.1021/acs.chemrev.1c00611
  11. Chupakhin O.N., Rusinov V.L., Ulomsky E.N., Kojevnikov D.N., Neunhoeffer H. Mendeleev Commun. 1997, 7, 66–67. https://doi.org/10.1070/MC1997v007n02ABEH000700
  12. Huang J.J. J. Org. Chem. 1985, 50, 2293–2298. https://doi.org/10.1021/jo00213a019
  13. Кожевников Д.Н., Кожевников В.Н., Ковалев И.С., Русинов В.Л. Чупахин О.Н., Александров Г.Г. ЖОрХ. 2002, 38, 780–786.
  14. Kozhevnikov D.N., Kozhevnikov V.N., Kovalev I.S., Rusinov V.L., Chupakhin O.N., Aleksandrov G.G. Russ. J. Org. Chem. 2002, 38, 744–750. https://doi.org/10.1023/A:1019631610505.
  15. Криночкин А.П., Штайц Я.К., Кудряшова Е.А., Ладин Е.Д., Копчук Д.С., Зырянов Г.В., Шафран Ю.М., Носова Э.В., Чупахин О.Н. Доклады Российской академии наук: химия и науки о материалах. 2022, 504, 19–23.
  16. Krinochkin A.P., Shtaitz Ya.K., Kudryashova E.A., Ladin E.D., Kopchuk D.S., Zyryanov G.V., Shafran Yu.M., Nosova E.V., Chupakhin O.N. Dokl. Chem. 2022, 504, 79–82. https://doi.org/10.1134/S0012500822600146.
  17. Krinochkin A.P., Kopchuk D.S., Giri K., Shtaitz Ya.K., Starnovskaya E.S., Khalymbadzha I.A., Drokin R.A., Ulomsky E.N., Santra S., Zyryanov G.V., Rusinov V.L., Chupakhin O.N. ChemistrySelect. 2018, 3, 8202–8206. https://doi.org/10.1002/slct.201801244.
  18. Криночкин А.П., Гуда М.Р., Копчук Д.С., Словеснова Н.В., Ковалев И.С., Савчук М.И., Штайц Я.К., Старновская Е.С., Зырянов Г.В., Чупахин О.Н. ЖОрХ. 2021, 57, 1496–1500.
  19. Krinochkin A.P., Guda M.R., Kopchuk D.S., Slovesnova N.V., Kovalev I.S., Savchuk M.I., Shtaitz Ya.K., Starnovskaya E.S., Zyryanov G.V., Chupakhin O.N. Russ. J. Org. Chem. 2021, 57, 1753–1756. https://doi.org/10.1134/S1070428021100262.
  20. Копчук Д.С., Никонов И.Л., Хасанов А.Ф., Гундала С., Криночкин А.П., Слепухин П.А., Зырянов Г.В., Венкатапурам П., Чупахин О.Н., Чарушин В.Н. ХГС. 2019, 55, 978–984.
  21. Kopchuk D.S., Nikonov I.L., Khasanov A.F., Gundala S., Krinochkin A.P., Slepukhin P.A., Zyryanov G.V., Venkatapuram P., Chupakhin O.N., Charushin V.N. Chem. Heterocycl. Compds. 2019, 55, 978–984. https://doi.org/10.1007/s10593-019-02565-8.
  22. Kozhevnikov V.N., Kozhevnikov D.N., Nikitina T.V., Rusinov V.L., Chupakhin O.N., Zabel M., Koenig B. J. Org. Chem. 2003, 68, 2882–2888. https://doi.org/10.1021/jo0267955

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).