Chemoselective Oxidative Cross-Coupling of Secondary Phosphine Chalcogenides with Mercaptoalkanols: Synthesis of Hydroxyl-Containing Thioesters of Chalcogenophosphinic Acids

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The oxidative cross-coupling of secondary phosphine chalcogenides with mercaptoalkanols in the presence of the CCl4/Et3N system at an equimolar ratio of reagents proceeds chemoselectively under mild conditions (20–25°C, 2–7 h) to give the corresponding thioesters of chalcogenophosphinic acids, containing free reactive hydroxyl groups, in 76–89% yield.

About the authors

K. O Khrapova

A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences

ORCID iD: 0000-0003-0040-8877
Irkutsk, Russia

P. A Volkov

A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: volkov_p_a@irioch.irk.ru
ORCID iD: 0000-0001-7985-8226
Irkutsk, Russia

A. A Telezhkin

A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences

ORCID iD: 0000-0001-6220-0700
Irkutsk, Russia

L. I Larina

A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences

ORCID iD: 0000-0002-7388-712X
Irkutsk, Russia

References

  1. Ravaschino E.L., Docampo R., Rodriguez J.B. J. Med. Chem. 2006, 49, 426–435. https://doi.org/10.1021/jm050922i
  2. Dehghanpour S., Rasmi Y., Bagheri M. Mol. Divers. 2007, 11, 47–57. https://doi.org/10.1007/s11030-007-9056-6
  3. Alexandre F.-R., Amador A.S., Bot S., Caillet C.T., Convard T., Jakubik J., Musiu C., Poddesu B., Var-giu L., Liuzzi M., Roland A., Seifer M., Standring D., Storer R., Dousson C.B. J. Med. Chem. 2011, 54, 392–395. https://doi.org/10.1021/jm101142k
  4. Joachimiak Ł., Błażewska K.M. J. Med. Chem. 2018, 61, 8536–8562. https://doi.org/10.1021/acs.jmedchem.8b00249
  5. Tajti Á., Keglevich G. Organophosphorus Chemistry. Ed. G. Keglevich. Boston: De Gruyter, Berlin. 2018, 53–65. https://doi.org/10.1515/9783110535839-003
  6. Kim Y.K., Livinghouse T., Horino Y. J. Am. Chem. Soc. 2003, 125, 9560–9561. https://doi.org/10.1021/ja021445l
  7. Cauzzi D., Graiff C., Pattacini R., Predieri G., Tiripicchio A., Kahlal S., Saillard J.-Y. Eur. J. Inorg. Chem. 2004, 1063–1072. https://doi.org/10.1002/ejic.200300386
  8. Williams D.B.G., Evans S.J., de Bod H., Mokhadinyana M.S., Hughes T. Synthesis. 2009, 3106–3112. https://doi.org/10.1055/s-0029-1216897
  9. Popovici C., Fernández I., Oña-Burgos P., Roces L., García-Granda S., López Ortiz F. Dalton Trans. 2011, 40, 6691–6703. https://doi.org/10.1039/C1DT10194C
  10. Cho C.-S., Fu S.-C., Chen L.-W., Wu T.-R. Polym. Int. 1998, 47, 203–209. https://doi.org/10.1002/(SICI)1097-0126(1998100)47:2<203::AID-PI55>3.0.CO;2-X
  11. Jiang Z., Xu D., Ma X., Liu J., Zhu P. Cellulose. 2019, 26, 5783–5796. https://doi.org/10.1007/s10570-019-02465-2
  12. Gigmes D., Bertin D., Marque S., Guerret O., Tordo P. Tetrahedron Lett. 2003, 44, 1227–1229. https://doi.org/10.1016/S0040-4039(02)02848-4
  13. Hodgson J.L., Green K.A., Coote M.L. Org. Lett. 2005, 7, 4581–4584. https://doi.org/10.1021/ol0516420
  14. Goda K., Hanafusa F., Inamoto N. Bull. Chem. Soc. Jap. 1978, 51, 818–820. https://doi.org/10.1246/bcsj.51.818
  15. Au-Yeung T.-L., Chan K.-Y., Chan W.-K., Haynes R.K., Williams I.D., Yeung L.L. Tetrahedron Lett. 2001, 42, 453–456. https://doi.org/10.1016/S0040-4039(00)01950-X
  16. Sato A., Yorimitsu H., Oshima K. Tetrahedron. 2009, 65, 1553–1558. https://doi.org/10.1016/j.tet.2008.12.071
  17. Bergemann K., Hesselbarth F., Wenschuh E., Baumeister U., Hartung H. Phosphorus, Sulfur, Silicon Relat. Elem. 1993, 79, 131–139. https://doi.org/10.1080/10426509308034406
  18. Le Corre S.S., Berchel M., Couthon-Gourvès H., Haelters J.-P., Jaffrès P.-A. Beilstein J. Org. Chem. 2014, 10, 1166–1196. https://doi.org/10.3762/bjoc.10.117
  19. Ou Y., Huang Y., He Z., Yu G., Huo Y., Li X., Gao Y., Chen Q. Chem. Commun. 2020, 56, 1357–1360. https://doi.org/10.1039/C9CC09407E
  20. Wang T., Liu Z., Fang S. Chin. J. Org. Chem. 2023, 43, 1069–1083. https://doi.org/10.6023/cjoc202210032
  21. Atherton F.R., Openshaw H.T., Todd A.R. J. Chem.Soc. 1945, 660–663. https://doi.org/10.1039/JR9450000660
  22. Gusarova N.K., Volkov P.A., Ivanova N.I., Sukhov B.G., Larina L.I., Kazheva O.N., Alexandrov G.G., Dyachenko O.A., Trofimov B.A. Tetrahedron Lett. 2013, 54, 6772–6775. https://doi.org/10.1016/j.tetlet.2013.10.016
  23. Volkov P.A., Pogodaeva N.N., Ivanova N.I., Khrapova K.O., Larina L.I., Sukhov B.G., Gatilov Y.V., Gusarova N.K., Trofimov B.A. Tetrahedron Lett. 2014, 55, 4927–4929. https://doi.org/10.1016/j.tetlet.2014.07.016
  24. Gusarova N.K., Volkov P.A., Ivanova N.I., Larina L.I., Trofimov B.A. Heteroat. Chem. 2012, 23, 322–328. https://doi.org/10.1002/hc.21020
  25. Gusarova N.K., Volkov P.A., Ivanova N.I., Gatilov Y.V., Trofimov B.A. Tetrahedron Lett. 2013, 54, 3543–3545. https://doi.org/10.1016/j.tetlet.2013.04.117
  26. Volkov P.A., Ivanova N.I., Gusarova N.K., Trofimov B.A. J. Sulfur Chem. 2014, 35, 237–247. https://doi.org/10.1080/17415993.2013.853067
  27. Храпова К.О., Гусарова Н.К., Тележкин А.А., Волков П.А., Иванова Н.И., Ларина Л.И., Апарцин К.А., Киреева В.В., Трофимов Б.А. ДАН. 2020, 490, 19–23.
  28. Khrapova K.O., Gusarova N.K., Telezhkin A.A., Volkov P.A., Ivanova N.I., Larina L.I., Apartsin K.A., Kireeva V.V., Trofimov B.A. Dokl. Chem. 2020, 490, 11–15. https://doi.org/10.1134/S0012500820010048
  29. Khrapova K.O., Telezhkin A.A., Volkov P.A., Larina L.I., Pavlov D.V., Gusarova N.K., Trofimov B.A. Org. Biomol. Chem. 2021, 19, 5098–5107. https://doi.org/10.1039/d1ob00287b
  30. Wang G., Shen R., Xu Q., Goto M., Zhao Y., Han L.-B. J. Org. Chem. 2010, 75, 3890–3892. https://doi.org/10.1021/jo100473s
  31. Wagner S., Rakotomalala M., Bykov Y., Walter O., Dőring M. Heteroat. Chem. 2012, 23, 216–222. https://doi.org/10.1002/hc.21006
  32. Yu X., Zhang S., Jiang Z., Zhang H.-S., Wang T. Eur. J. Org. Chem. 2020, 3110–3113. https://doi.org/10.1002/ejoc.202000385
  33. Christoforou A., Nicolaou G., Elemes Y. Tetrahedron Lett. 2006, 47, 9211–9213. https://doi.org/10.1016/j.tetlet.2006.10.134
  34. Alguindigue Nimmo S.L., Lemma K., Ashby M.T. Heteroat. Chem. 2007, 18, 467–471. https://doi.org/10.1002/hc.20340
  35. Moeini N., Tamoradi T., Ghadermazi M., Ghorbani-Choghamarani A. Appl. Organomet. Chem. 2018, 32, e4445. https://doi.org/10.1002/aoc.4445
  36. Semenzin D., Etemad-Moghadam G., Albouy D., Diallo O., Koenig M. J. Org. Chem. 1997, 62, 2414–2422. https://doi.org/10.1021/jo9622441
  37. Trofimov B.A., Вrandsma L., Arbuzova S.N., Malysheva S.F., Gusarova N.K. Tetrahedron Lett. 1994, 35, 7647–7650. https://doi.org/10.1016/S0040-4039(00)78365-1
  38. Gusarova N.K., Bogdanova M.V., Ivanova N.I., Chernysheva N.А., Sukhov B.G., Sinegovskaya L.M., Kazheva O.N., Alexandrov G.G., D’yachenko O.A., Trofimov B.A. Synthesis. 2005, 3103–3106. https://doi.org/10.1055/s-2005-918408
  39. Сухов Б.Г., Гусарова Н.К., Иванова Н.И., Богданова М.В., Кажева О.Н., Александров Г.Г., Дьяченко О.А., Синеговская Л.М., Малышева С.Ф., Трофимов Б.А. ЖСХ. 2005, 46, 1109–1113.
  40. Sukhov B.G., Gusarova N.K., Ivanova N.I., Bogdanova M.V., Kazheva O.N., Alexandrov G.G., Dyachenko O.A., Sinegovskaya L.M., Malysheva S.F., Trofimov B.A. J. Struct. Chem. 2005, 46, 1066–1071. https://doi.org/10.1007/s10947-006-0243-6
  41. Maier L. Helv. Chim. Acta. 1966, 49, 1000–1002. https://doi.org/10.1002/hlca.19660490223

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).