Synthesis, Molecular Structure, and Spectral Properties of Ethyl 3-Oxo-2-(2,4,6-trinitrophenyl)butanoate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A preparative method for the synthesis of ethyl 3-oxo-2-(2,4,6-trinitrophenyl)butanoate with a total yield of 76% has been developed. The proposed method makes it possible to obtain the target compound under mild conditions from commercially available compounds: picric acid and acetoacetic ester. The structure of the compound was confirmed by X-ray diffraction and 1H NMR spectroscopy. UV-visible spectroscopy revealed the ability of the compound particles to form an intramolecular complex with charge transfer.

About the authors

D. A Kazantsev

Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences

Email: daniil_kazantsev@mail.ru
Ekaterinburg, Russia

A. A Denisov

Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences; Ural Federal University named after the First President of Russia B. N. Yeltsin, Institute of Natural Sciences and Mathematics

Ekaterinburg, Russia; Ekaterinburg, Russia

M. S Valova

Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences

Ekaterinburg, Russia

P. A Slepukhin

Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences

Ekaterinburg, Russia

A. V Pestov

Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences; Ural Federal University named after the First President of Russia B. N. Yeltsin, Institute of Natural Sciences and Mathematics

Ekaterinburg, Russia; Ekaterinburg, Russia

References

  1. Kretcchy N., Holik A.-K., Somoza V., Stengele K.-P., Somoza M.M. Angew. Chem. Int. Ed. 2015, 54 (29), 8555–8559. https://doi.org/10.1002/anie.201502125
  2. Wöll D., Walbert S., Stengele K.-P., Albert T.J., Richmond T., Norton J., Steiner U.E. Helvetica Chimica Acta. 2004, 87 (1), 28–45. https://doi.org/10.1002/hlca.200490015
  3. Sack M., Hölz K., Holik A.-K., Kretschy N., Somoza V., Stengele K.-P., Somoza M.M. Journal of Nanobiotechnology. 2016, 14 (1). https://doi.org/10.1186/s12951-016-0166-0
  4. Yang F., Dong B., Nie K., Shi H., Wu Y., Wang H., Liu Z. ACS Combinatorial Scienc. 2015, 17 (10), 608–614. https://doi.org/10.1021/acscombsci.5b00074
  5. Albert T.J., Norton J., Ott M., Richmond T., Nuwaysir K., Nuwaysir E.F., Stengele K.-P., Green R.D. Nucleic Acids Res. 2003, 31 (7), 35e. https://doi.org/10.1093/nar/gng035
  6. Milburn T., Matsubara N., Billington A.P., Udgaonkar J.B., Walker J.W., Carpenter B.K. Biochemistry. 1989, 28 (1), 49–55. https://doi.org/10.1021/bi00427a008
  7. Görner H. Photochemical & Photobiological Sciences. 2005, 4 (10), 822. https://doi.org/10.1039/b506393k
  8. Onys’ko P.P., Proklina N.V., Prokopenko V.P., Gololobov Y.G. Zh. Obshch. Khim. 1991, 61 (123), 2441–2450. https://doi.org/10.1002/chin.199405216
  9. Chudek J.A., Foster R., Stewart W.A. Chem. Soc., Perkin Trans. 1. 1983, 3, 1605–1609. https://doi.org/10.1039/p19830001605
  10. Егоров М.П., Бельский В.К., Петров Э.С., Терехова М.И., Белецкая И.П. ЖОрХ. 1984, 20 (10), 2033–2042.
  11. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. J. Appl. Crystallogr. 2009, 42, 339–341. https://doi.org/10.1107/S0021889808042726
  12. Sheldrick G.M. Acta Cryst. 2008, A64, 112–122. https://doi.org/10.1107/S0108767307043930

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).