Synthesis and Structure of Cyclopentadienylmolybdenum Tricarbonylate Complexes of Y3+ and Yb2+

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The heterobimetallic complex [(GiPr)2Y(m2-CO)2MoCp(CO)2]2 (1) was obtained by the salt metathesis reaction of equimolar amounts of the yttrium bis-guanidinate chloride complex (GiPr)2Y(μ-Cl)2Li(THF)2 and Na[CpMo(CO)3] in a yield of 72%. The reaction of the monoamidinide bisalkyl derivative of yttrium AmdY(CH2SiMe3)2(THF) with two equivalents of molybdenum hydride CpMo(CO)3H, accompanied by the elimination of SiMe4, also made it possible to obtain the heterobimetallic complex [AmdY(THF)2{(m2-CO)MoCp(CO)22-CO)MoCp(CO)}2] (2), the yield of which was 66%. Using the interaction of the naphthalene complex (C10H8)Yb(THF)2 with CpMo(CO)3H in a molar ratio of 1:2 it was shown that the method can also be used to synthesize the heterobimetallic complex of divalent ytterbium [Yb(THF)4{(m2-CO)MoCp(CO)3}2]n (3). X-ray analysis revealed that complexes 1-3 contain a tetranuclear heterobimetallic skeleton Ln2Mo2 in which the Y3+ or Yb2+ ions are linked to molybdenum ions by bridging isocarbonyl groups, while complex 3 is a coordination polymer.

About the authors

D. M Lyubov

G.A. Razuvaev Institute of Organometallic Chemistry, RAS

Nizhny Novgorod, Russia

A. V Cherkasov

G.A. Razuvaev Institute of Organometallic Chemistry, RAS

Nizhny Novgorod, Russia

A. A Trifonov

G.A. Razuvaev Institute of Organometallic Chemistry, RAS; A.N. Nesmeyanov Institute of Elemento-Organic Compounds, RAS

Email: trif@iomc.ras.ru
Nizhny Novgorod, Russia; Moscow, Russia

References

  1. Butovskii M.V., Kempe R. New J. Chem. 2015, 39, 7544–7558. https://doi.org/10.1039/C5NJ00802F
  2. Fang W., Zhu Q., Zhu C. Chem. Soc. Rev. 2022, 51, 8434–8449. https://doi.org/10.1039/D2CS00424K
  3. Hazin P.N., Huffman J.C., Bruno J.W. J. Chem. Soc., Chem. Commun. 1988, No. 22, 1473–1474. https://doi.org/10.1039/C39880001473
  4. Chen S.-M., Xiong J., Zhang Y.-Q., Ma F., Sun H.-L., Wang B.-W., Gao S. Chem. Commun. 2019, 55, 8250–8253. https://doi.org/10.1039/C9CC00388F
  5. Zhang P., Benner F., Chilton N.F., Demir S. Chem. 2022, 8, 717–730. https://doi.org/10.1016/j.chempr.2021.11.007
  6. Burns C.P., Yang X., Wofford J.D., Bhuvanesh N.S., Hall M.B., Nippe M. Angew. Chemie Int. Ed. 2018, 57, 8144–8148. https://doi.org/10.1002/anie.201803761
  7. Rofer-DePoorter C.K. Chem. Rev. 1981, 81, 447–474. https://doi.org/10.1021/cr00045a002
  8. Buassi-Monroy O., Luhrs C., Chávez-Chávez A., Michel C. Mater. Lett. 2004, 58, 716–718. https://doi.org/10.1016/j.matlet.2003.07.001
  9. Sadaoka Y., Traversa E., Sakamoto M. J. Alloys Compd. 1996, 240, 51–59. https://doi.org/10.1016/0925-8388(96)02300-6
  10. Baiker A., Marti P.E., Keusch P., Fritsch E., Reller A. J. Catal. 1994, 146, 268–276. https://doi.org/10.1016/0021-9517(94)90030-2
  11. Jujjuri S., Ding E., Shore S.G., Keane M.A. Appl. Organomet. Chem. 2003, 17, 493–498. https://doi.org/10.1002/aoc.463
  12. Shore S.G., Ding E., Park C., Keane M.A. Catal. Commun. 2002, 3, 77–84. https://doi.org/10.1016/S1566-7367(02)00052-3
  13. Rath A., Aceves E., Mitome J., Liu J., Ozkan U., Shore S. J. Mol. Catal. A Chem. 2001, 165, 103–111. https://doi.org/10.1016/S1381-1169(00)00447-7
  14. Suleimanov G.Z., Khandozhko V.N., Abdullaeva L.T., Shifrina R.R., Khalilov K.S., Kolobova N.E., Beletskaya I.P. J. Chem. Soc. Chem. Commun. 1984, 3, 191. https://doi.org/10.1039/c39840000191
  15. Marianelli R.S., Durney M.T. J. Organomet. Chem. 1971, 32, C41–C43. https://doi.org/10.1016/S0022-328X(00)85059-7
  16. Pasynskii A.A., Eremenko I.L., Suleimanov G.Z., Nuriev Y.A., Beletskaya I.P., Shklover V.E., Struchkov Y.T. J. Organomet. Chem. 1984, 266, 45–52. https://doi.org/10.1016/0022-328X(84)80109-6
  17. Beletskaya I.P., Suleimanov G.Z., Shifrina R.R., Mekhdiev R.Y., Agdamskii T.A., Khandozhko V.N., Kolobova N.E. J. Organomet. Chem. 1986, 299, 239–244. https://doi.org/10.1016/0022-328X(86)82020-4
  18. Hillier A.C., Sella A., Elsegood M.R.J. J. Chem. Soc. Dalt. Trans. 1998, 22, 3871–3874. https://doi.org/10.1039/a806011h
  19. Blake M.P., Kaltsoyannis N., Mountford P. Chem. Commun. 2013, 49, 3315. https://doi.org/10.1039/c3cc41360h
  20. Zhaomin H., Ken-ichi A., Yuzuru T., Yasuo W. J. Organomet. Chem. 1994, 473, 101–104. https://doi.org/10.1016/0022-328X(94)80110-X
  21. Trifonov A.A., Skvortsov G.G., Lyubov D.M., Fukin G.K., Fedorova E.A., Bochkarev M.N. Russ. Chem. Bull. 2005, 54, 2511–2518. https://doi.org/10.1007/s11172-006-0149-7
  22. Shannon R.D. Acta Crystallogr. Sect. A. 1976, 32, 751–767. https://doi.org/10.1107/S0567739476001551
  23. Adams R.D., Collins D.M., Cotton F.A. Inorg. Chem. 1974, 13, 1086–1090. https://doi.org/10.1021/ic50135a015
  24. Trifonov A.A., Lyubov D.M., Fedorova E.A., Fukin G.K., Schumann H., Mühle S., Hummert M., Bochkarev M.N. Eur. J. Inorg. Chem. 2006, 2006, 747–756. https://doi.org/10.1002/ejic.200500641
  25. Trifonov A.A., Lyubov D.M., Fukin G.K., Baranov E. V., Kurskii Y.A. Organometallics. 2006, 25, 3935–3942. https://doi.org/10.1021/om060280c
  26. Trifonov A.A., Skvortsov G.G., Lyubov D.M., Skorodumova N.A., Fukin G.K., Baranov E. V., Glushakova V.N. Chem. – A Eur. J. 2006, 12, 5320–5327. https://doi.org/10.1002/chem.200600058
  27. Lyubov D.M., Fukin G.K., Trifonov A.A. Inorganic Chemistry. 2007, 11450–11456. https://doi.org/10.1021/ic701215t
  28. Lyubov D.M., Bubnov A.M., Fukin G.K., Dolgushin F.M., Antipin M.Y., Pelcé O., Schappacher M., Guillaume S.M., Trifonov A.A. Eur. J. Inorg. Chem. 2008, 2008, 2090–2098. https://doi.org/10.1002/ejic.200701343
  29. Ajellal N., Lyubov D.M., Sinenkov M.A., Fukin G.K., Cherkasov A.V., Thomas C.M., Carpentier J., Trifonov A.A. Chem. – A Eur. J. 2008, 14, 5440–5448. https://doi.org/10.1002/chem.200800288
  30. Meyer J., González‐Gallardo S., Hohnstein S., Garnier D., Armbruster M.K., Fink K., Klopper W., Breher F. Chem. – A Eur. J. 2015, 21, 2905–2914. https://doi.org/10.1002/chem.201405397
  31. Escomel L., Jeanneau E., Thieuleux C., Camp C. Inorganics. 2024, 12, 72. https://doi.org/10.3390/inorganics12030072
  32. Sobaczynski A.P., Obenauf J., Kempe R. Eur. J. Inorg. Chem. 2014, 7, 1211–1217. https://doi.org/10.1002/ejic.201301476
  33. Tolpygin A.O., Sachkova A.A., Mikhailychev A.D., Ob’edkov A.M., Kovylina T.A., Cherkasov A.V., Fukin G.K., Trifonov A.A. Dalt. Trans. 2022, 51, 7723–7731. https://doi.org/10.1039/D2DT00866A
  34. Päiväsaari J., Dezelah, IV C.L., Back D., El-Kaderi H.M., Heeg M.J., Putkonen M., Niinistö L., Winter C.H. J. Mater. Chem. 2005, 15, 4224. https://doi.org/10.1039/b507351k
  35. Beer S.M.J., Krusenbaum A., Winter M., Vahlas C., Devi A. Eur. J. Inorg. Chem. 2020, 2020, 3587–3596. https://doi.org/10.1002/ejic.202000436
  36. Xu L., Wang Y.-C., Zhang W.-X., Xi Z. Dalt. Trans. 2013, 42, 16466. https://doi.org/10.1039/c3dt52179f
  37. Brunner T.S., Benndorf P., Gamer M.T., Knöfel N., Gugau K., Roesky P.W. Organometallics. 2016, 35, 3474–3487. https://doi.org/10.1021/acs.organomet.6b00523
  38. Lyubov D.M., Cherkasov A.V., Fukin G.K., Trifonov A.A. Organometallics. 2016, 35, 126–137. https://doi.org/10.1021/acs.organomet.5b00883
  39. Khristolyubov D.O., Lyubov D.M., Trifonov A.A. Russ. Chem. Rev. 2021, 90, 529–565. https://doi.org/10.1070/RCR4992
  40. Lyubov D.M., Trifonov A.A. Inorg. Chem. Front. 2021, 8, 2965–2986. https://doi.org/10.1039/D1QI00206F
  41. Khristolyubov D.O., Lyubov D.M., Shavyrin A.S., Cherkasov A.V., Fukin G.K., Trifonov A.A. Inorg. Chem. Front. 2020, 7, 2459–2477. https://doi.org/10.1039/d0qi00369g
  42. Bochkarev M.N., Trifonov A.A., Fedorova E.A., Emelyanova N.S., Basalgina T.A., Kalinina G.S., Razuvaev G.A. J. Organomet. Chem. 1989, 372, 217–224. https://doi.org/10.1016/0022-328X(89)87096-2
  43. Hughes R.P., Klaeui W., Reisch J.W., Mueller A. Organometallics. 1985, 4, 1761–1766. https://doi.org/10.1021/om00129a013
  44. Piskounov A.V., Maslennikov S.V., Spirina I.V., Maslennikov V.P. Appl. Organomet. Chem. 2000, 14, 590–597. https://doi.org/10.1002/1099-0739(200010)-14:10<590::AID-AOC43>3.0.CO;2-O
  45. Lyle S.J., Rahman M.M. Talanta. 1963, 10, 1177–1182. https://doi.org/10.1016/0039-9140(63)80170-8
  46. Bruker (2012). Smart. Bruker AXS Inc., Madison, Wisconsin, USA.
  47. CrysAlis Pro Softw. Syst. Version 35.19. Wroclaw Rigaku Corp. 2011.
  48. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. J. Appl. Crystallogr. 2015, 48, 3–10. https://doi.org/10.1107/S1600576714022985
  49. Sheldrick G.M. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. https://doi.org/10.1107/S2053229614024218
  50. Sheldrick G.M. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. https://doi.org/10.1107/S2053273314026370

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).