Regio- and Stereoselective Synthesis of New (Z)-Selenocyanatoacrylamides

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A regio- and stereoselective synthesis of new vinyl selenocyanates (yields 76–93 %), containing N-alkylamide groups and heterocyclic amide substituents, has been developed based on the reaction of 3-trimethylsilyl-2-propynamides with potassium selenocyanate. The reaction proceeds in the presence of ammonium chloride in aqueous acetonitrile and is accompanied by a desilylation process.

About the authors

M. V. Andreev

A.E. Favorsky Irkutsk Institute of Chemistry, Federal Research Center, Siberian Branch of the Russian Academy of Sciences

ORCID iD: 0000-0002-0147-799X
Irkutsk, Russia

V. A. Potapov

A.E. Favorsky Irkutsk Institute of Chemistry, Federal Research Center, Siberian Branch of the Russian Academy of Sciences

Email: v.a.potapov@mail.ru
ORCID iD: 0000-0002-3151-6726
Irkutsk, Russia

M. V. Musalov

A.E. Favorsky Irkutsk Institute of Chemistry, Federal Research Center, Siberian Branch of the Russian Academy of Sciences

ORCID iD: 0000-0002-7638-8377
Irkutsk, Russia

L. I. Larina

A.E. Favorsky Irkutsk Institute of Chemistry, Federal Research Center, Siberian Branch of the Russian Academy of Sciences

ORCID iD: 0000-0002-7388-712X
Irkutsk, Russia

References

  1. Toshimitsu A. Organic selenocyanates, tellurocyanates and related compounds. Synthesis and reactions. In: Patai's Chemistry of Functional Groups. Organic Selenium and Tellurium Compounds. Rappoport Z., Ed. John Wiley and Sons, Inc.: Chichester, UK. 2013, p. 845. https://doi.org/10.1002/9780470682531.PAT0723
  2. Guillemin J.-C. Curr. Org. Chem., 2011, 15, 1670–1687. https://doi.org/10.2174/138527211795656642
  3. Shaaban S., Arafat M.A., Hamama W.S. ARKIVOC, 2014, (i), 470–505. https://doi.org/10.3998/ark.5550190.p008
  4. Müller J., Terfort A. Inorg. Chim. Acta, 2006, 359, 4821–4827. https://doi.org/10.1016/j.ica.2006.05.032
  5. Plano D., Baquedano Y., Moreno-Mateos D. et al. Eur. J. Med. Chem., 2011, 46, 3315–3323. https://doi.org/10.1016/j.ejmech.2011.04.054
  6. Manna T., Misra A.K. SynOpen, 2018, 2, 229–233. https://doi.org/10.1055/s-0037-1610360
  7. Heredia A.A., Peñéñory A.B. RSC Adv., 2015, 5, 105699–105706. https://doi.org/10.1039/C5RA20883A
  8. Cooksey J.P., Kocieński P.J., Blacker A.J. Org. Process Res. Dev., 2019, 23, 2571–2575. https://doi.org/acs.oprd.9b00380
  9. Gouda M., Abbas Y.J., Abd El-Lateef H.M. et al. Biointerface Res. Appl. Chem., 2023, 13, 219. https://doi.org/10.33263/BRIAC133.219
  10. Debnath S., Agarwal A., Kumar N.R., Bedi A. Future Pharmacol., 2022, 2, 595–607. https://doi.org/10.3390/futurepharmacol2040036
  11. Gowda R., Madhunapantula S.V., Desai D. et al. Cancer Biol. Ther., 2012, 13, 756–765. https://doi.org/10.4161/cbt.20558
  12. Desai D., Salli U., Vrana K.E., Amin S. Bioorg. Med. Chem. Lett., 2010, 20, 2044–2047. https://doi.org/10.1016/j.bmcl.2009.07.068
  13. Krishnegowda G., Gowda A.P., Tagaram H.R.S. et al. Bioorg. Med. Chem., 2011, 19, 6006–6014. https://doi.org/10.1016/j.bmc.2011.08.044
  14. Desai D., Sinha I., Null K. et al. Int. J. Cancer, 2010, 127, 230–238. https://doi.org/10.1002/ijc.25033
  15. Nasim M.J., Witek K., Kincses A. et al. New J. Chem., 2019, 43, 6021–6031. https://doi.org/10.1039/C9NJ00563C
  16. Shaaban S., Negm A., Sobh M.A., Wessjohann L.A. Eur. J. Med. Chem., 2015, 97, 190–201. https://doi.org/10.1016/j.ejmech.2015.05.002
  17. Sk U.H., Bhattacharya S. Env. Toxicol. Pharmacol., 2006, 22, 298–308. https://doi.org/10.1016/j.etap.2006.04.004
  18. Hassanpour A., Ghavidelaghdam E., Ebadi A.G. et al. RSC Adv., 2021, 11, 22305–22316. https://doi.org/10.1039/D1RA01035B
  19. Maity P., Paroi B., Ranu B.C. Org. Lett., 2017, 19, 5748−5751. https://doi.org/10.1021/acs.orglett.7b02571
  20. Lu L.-H., Wang Z., Xia W. et al. Chin. Chem. Lett., 2019, 30, 1237–1240. https://doi.org/10.1016/j.cclet.2019.04.033
  21. Wu С., Xiao H.-J., Wang S.-W. et al. ACS Sustainable Chem. Eng., 2019, 7, 2169–2175. https://doi.org/10.1021/acssuschemeng.8b04877
  22. Andreev M.V., Potapov V.A., Musalov M.V., Larina L.I. Catalysts, 2023, 13, 1257. https://doi.org/10.3390/catal13091257
  23. Medvedeva A.S., Andreev M.V., Safronova L.P. Russ. J. Org. Chem., 2010, 46, 1466–1470. https://doi.org/10.1134/S1070428010100040
  24. Andreev M.V., Potapov V.A., Musalov M.V., Amosova S.V. Molecules, 2020, 25, 5940. https://doi.org/10.3390/molecules25245940
  25. Potapov V.A. Organic diselenides, ditellurides, polyselenides and polytellurides. Synthesis and reactions. In: Patai's Chemistry of Functional Groups. Organic Selenium and Tellurium Compounds. Rappoport, Z., Ed., John Wiley and Sons, Inc.; Chichester, UK: 2013. https://doi.org/10.1002/9780470682531.pat0716
  26. Potapov V.A., Andreev M.V., Musalov M.V. et al. Inorganics, 2022, 10, 74. https://doi.org/10.3390/inorganics10060074
  27. Tejedor D., Delgado-Hernández S., Colella L., García-Tellado F. Chem. Eur. J., 2019, 25, 15046–15049. https://doi.org/10.1002/chem.201903402
  28. Shimada K., Oikawa S., Nakamura H. et al. Bull. Chem. Soc. Jpn., 2005, 78, 899–905. https://doi.org/10.1246/bcsj.78.899
  29. Гельман Н.Э., Терентьева Е.А., Шанина Т.М., Кипаренко Л.М. Методы количественного органического элементного анализа. Москва: Химия, 1987. С. 104.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).