New Bifunctional Chalcogenorganic Compounds Based on Reactions of Tellurium, Selenium, and Sulfur Halides with Allylicatic Acid

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Based on the chalcogenfunctionalization reactions of allylicatic acid with tellurium, selenium, and sulfur halides, methods for the synthesis of new bifunctional chalcogenorganic compounds with yields of 86–99 % have been developed. The reactions of sulfur and selenium dihalides yield chalcogenides containing two butyrolactone rings in 97–99 % yields. Reactions with TeCl4 and TeBr4 yield trihalogenetellanes with a methylbutyrolactone group. The interaction of TeBr4 with allylicatic acid in methanol proceeds as methoxytellurination and is accompanied by the transformation of the carboxyl group into a methoxycarbonyl group. Reduction of the trihalogenetellanes with high yields yielded the corresponding ditellurides.

About the authors

M. V. Musalova

A.E. Favorsky Irkutsk Institute of Chemistry, Federal Research Center, Siberian Branch of the Russian Academy of Sciences

ORCID iD: 0000-0003-3619-7856
Irkutsk, Russia

M. V. Musalov

A.E. Favorsky Irkutsk Institute of Chemistry, Federal Research Center, Siberian Branch of the Russian Academy of Sciences

ORCID iD: 0000-0002-7638-8377
Irkutsk, Russia

A. A. Pakeeva

A.E. Favorsky Irkutsk Institute of Chemistry, Federal Research Center, Siberian Branch of the Russian Academy of Sciences

Irkutsk, Russia

L. A. Ivanova

A.E. Favorsky Irkutsk Institute of Chemistry, Federal Research Center, Siberian Branch of the Russian Academy of Sciences

Irkutsk, Russia

V. A. Potapov

A.E. Favorsky Irkutsk Institute of Chemistry, Federal Research Center, Siberian Branch of the Russian Academy of Sciences

Email: v.a.potapov@mail.ru
ORCID iD: 0000-0002-3151-6726
Irkutsk, Russia

References

  1. Qi C., Lu Z., Gu Y. et al. RSC Adv., 2024, 14, 23147–23151. https://doi.org/10.1039/D4RA04266B
  2. Kuang M., Li H., Zeng Z. et al. Org. Lett., 2023, 25, 8095–8099. https://doi.org/10.1021/acs.orglett.3c03197
  3. Zhang Y.-Q., Jiang Y.-Q., Wang Y.-H. et al. J. Org. Chem., 2023, 88, 7431–7447. https://doi.org/10.1021/acs.joc.3c00788
  4. Qu P., Jiang Y.-Q., Wang Y.-H., Liu G.-Q. Green Chem., 2023, 25, 7485–7507. https://doi.org/10.1039/D3GC02546B
  5. Rafique J., Rampon D.S., Azeredo J.B. et al. Chem. Record, 2021, 21, 2739–2761. https://doi.org/10.1002/tcr.202100006
  6. Accurso A.A., Cho S.-H., Amin A. et al. J. Org. Chem., 2011, 76, 4392–4395. https://doi.org/10.1021/jo102440k
  7. Dapkekar A.B., Satyanarayana G. Org. Biomol. Chem., 2024, 22, 1775–1781. https://doi.org/10.1039/D4OB00105B
  8. Musalov M.V., Amosova S.V., Potapov V.A. Int. J. Mol. Sci., 2023, 24, 17485. https://doi.org/10.3390/ijms242417485
  9. Potapov V.A., Musalov M.V., Khabibulina A.G. et al. Inorganics, 2022, 10, 239. https://doi.org/10.3390/inorganics10120239
  10. Petragnani N., Stefani H.A., Valduga C.J. Tetrahedron, 2001, 57, 1411–1448. https://doi.org/10.1016/S0040-4020(00)01033-4
  11. Kostic M.D., Divac V.M., Bugarcic Z.M. Curr. Org. Chem., 2016, 20, 2606–2619. https://doi.org/10.2174/1385272820666160614081513
  12. Musalov M.V., Potapov V.A., Yakimov V.A. et al. Molecules, 2021, 26, 3729. https://doi.org/10.3390/molecules26102937
  13. Musalov M.V., Kapustina I.S., Spiridonova E.V. et al. Inorganics, 2023, 11, 304. https://doi.org/10.3390/inorganics11070304
  14. Musalov M.V., Potapov V.A. Int. J. Mol. Sci., 2022, 23, 15629. https://doi.org/10.3390/ijms232415629
  15. Cordeiro P.S., Chipoline I.C., Ribeiro R.C.B. et al. J. Brazilian Chem. Soc., 2022, 33, 111–127. https://dx.doi.org/10.21577/0103-5053.20210148
  16. Sun K., Wang X., Li C. et al. Org. Chem. Front., 2020, 7, 3100–3119. https://doi.org/10.1039/D0QO00849D
  17. Conner E.S., Crocker K.E., Fernando R.G. et al. Org. Lett., 2013, 15, 5558–5561. https://doi.org/10.1021/ol402753u
  18. Vieira A.A., Azeredo J.B., Godoi M. et al. J. Org. Chem., 2015, 80, 2120–2127. https://doi.org/10.1021/jo502621a
  19. Yu J.-M., Cai C. Org. Biomol. Chem., 2018, 16, 490–498. https://doi.org/10.1039/C7OB02892J
  20. Potapov V.A., Amosova S.V., Belozerova O.V. et al. Chem. Heterocycl. Comp., 2003, 39, 549–550. https://doi.org/10.1023/A:1024742119781
  21. Potapov V.A., Amosova S.V. Russ. J. Org. Chem., 2003, 39, 1373–1380. https://doi.org/10.1023/B:RUJO.0000010549.08131.18
  22. Petragnani N., Stefani H.A. Tellurium in Organic Synthesis; Academic Press: London, 2007.
  23. Potapov V.A. In: Patai's Chemistry of Functional Groups. Organic Selenium and Tellurium Compounds; Rappoport Z., Ed.; John Wiley and Sons: Chichester, UK, 2013; vol. 4, pp. 765–843. https://doi.org/10.1002/9780470682531.pat0716
  24. Гельман Н.Э., Терентьева Е.А., Шанина Т.М., Кипаренко Л.М. Методы количественного органического элементного анализа. Химия: Москва, 1987

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).