Photo-initiated iodosulfonylation of terminal arylalkynes with red light (625 nm)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The synthesis of β-iodovinylsulfones was carried out via direct bifunctionalization of terminal arylalkynes using an economical LED light source with a peak emission wavelength of 625 nm. The products were obtained with high yields (from 89 to 99 %) using equivalent amounts of reagents. The reaction of tosyl iodide with terminal arylalkynes proceeds via a radical mechanism and serves as a regioselective method for synthesizing β-iodovinylsulfones.

About the authors

V. A. Abramov

A.V. Topchiev Institute of Petrochemical Synthesis RAS

ORCID iD: 0009-0001-8103-6288
Moscow, Russia

M. A. Topchiy

A.V. Topchiev Institute of Petrochemical Synthesis RAS

ORCID iD: 0000-0002-6604-7034
Moscow, Russia

E. A. Drokin

A.V. Topchiev Institute of Petrochemical Synthesis RAS

ORCID iD: 0000-0002-8128-8645
Moscow, Russia

I. P. Beletskaya

A.V. Topchiev Institute of Petrochemical Synthesis RAS

ORCID iD: 0000-0001-9705-1434
Moscow, Russia

A. F. Aschenko

A.V. Topchiev Institute of Petrochemical Synthesis RAS

Email: aasachenko@ips.ac.ru
ORCID iD: 0000-0001-8638-9261
Moscow, Russia

References

  1. Fuchs K., Janek T., Karpl M. et al. Inorg. Chem., 2025, 64, 6460–6469. https://doi.org/10.1021/acs.inorgchem.4c05156
  2. Benedetto Tiz D., Rosati O., Sancineto L. Phosphorus, Sulfur, and Silicon and the Related Elements, 2025, 1–39. https://doi.org/10.1080/10426507.2025.2496521
  3. Peng G., Wei F., Bai J. et al. Org. Biomol. Chem., 2025, 23, 5301–5306. https://doi.org/10.1039/D5OB00483G
  4. Abramov V.A., Topchiy M.A., Rasskazova M.A. et al. Adv. Synth. Catal., 2025, 367, e70053. https://doi.org/10.1002/adsc.70053
  5. Tong J., Shu J., Wang Y. et al. Life Sci., 2024, 352, 122904. https://doi.org/10.1016/j.lfs.2024.122904
  6. Reddy R.J., Kumar J.J., Kumari A.H. Org. Biomol. Chem., 2024, 22, 2492–2509. https://doi.org/10.1039/D3OB01980B
  7. Abramov V.A., Topchiy M.A., Rasskazova M.A. et al. Green Chem., 2024, 26, 4653–4658. https://doi.org/10.1039/D3GC04810A
  8. Abramov V.A., Topchiy M.A., Rasskazova M.A. et al. Org. Biomol. Chem., 2023, 21, 3844–3849. https://doi.org/10.1039/D3OB00437F
  9. Абрамов В.А., Топчий М.А., Малышева А.С. и др. ЖОрХ, 2023, 59, 1620–1625. https://doi.org/10.31857/s0514749223120066
  10. Peng C., Gu F., Lin X. et al. Green Chem., 2023, 25, 671–677. https://doi.org/10.1039/D2GC04296G
  11. Beletskaya I.P., Ananikov V.P. Chem. Rev., 2022, 122, 16110–16293. https://doi.org/10.1021/acs.chemrev.1c00836
  12. Kumar S., Kumar J., Naqvi T. et al. ChemPhotoChem, 2022, 6, e202200110. https://doi.org/10.1002/cptc.202200110
  13. Aiebchun T., Mahalapbutr P., Auepattanapong A. et al. Molecules, 2021, 26, 2211. https://doi.org/10.3390/molecules26082211
  14. Rashdan H.R.M., Shehadi I.A., Abdelrahman M.T. Molecules, 2021, 26, 64817. https://doi.org/10.3390/molecules26164817
  15. Samanta S.K., Sarkar R., Bera M.K. Tetrahedron, 2021, 94, 132310. https://doi.org/10.1016/j.tet.2021.132310
  16. Zhou C., Zeng X. Synthesis, 2021, 53, 4614–4620. https://doi.org/10.1055/a-1559-3346
  17. Tang Yucai R.S., Wang Ping, Chen Piao. Chinese J. Org. Chem., 2019, 39, 1116–1121. https://doi.org/10.6023/cjoc201810002
  18. Ma Y., Wang K., Zhang D., Sun P. Adv. Synth. Catal., 2019, 361, 597–602. https://doi.org/10.1002/adsc.201801258
  19. Bi W., Ren C., Jia L. et al. Phosphorus, Sulfur, and Silicon and the Related Elements, 2017, 192, 391–396. https://doi.org/10.1080/10426507.2016.1259622
  20. Kadari L., Palakodety R.K., Yallapragada L.P. Org. Lett., 2017, 19, 2580–2583. https://doi.org/10.1021/acs.orglett.7b00896
  21. Tong C., Gan B., Yan Y., Xie Y.-Y. Synth. Commun., 2017, 47, 1927–1933. https://doi.org/10.1080/00397911.2017.1337152
  22. Feng M., Tang B., Liang S.H., Jiang X. Curr. Top. Med. Chem., 2016, 16, 1200–1216. https://doi.org/10.2174/1568026615666150915111741
  23. Meesin J., Katrun P., Pareseecharoen C. et al. J. Org. Chem., 2016, 81, 2744–2752. https://doi.org/10.1021/acs.joc.5b02810
  24. Gao Y., Wu W., Huang Y. et al. Org. Chem. Front., 2014, 1, 361–364. https://doi.org/10.1039/C3QO00075C
  25. Li X., Xu X., Shi X. Tetrahedron Lett., 2013, 54, 3071–3074. https://doi.org/10.1016/j.tetlet.2013.03.117
  26. Sawangphon T., Katrun P., Chaisiwamongkhol K. et al. Synth. Commun., 2013, 43, 1692–1707. https://doi.org/10.1080/00397911.2012.663448
  27. Nair V., Augustine A., Suja T.D. Synthesis, 2002, 2002, 2259–2265. https://doi.org/10.1055/s-2002-34838
  28. Truce W.E., Wolf G.C. J. Org. Chem., 1971, 36, 1727–1732. https://doi.org/10.1021/jo00812a001
  29. Truce W.E., Wolf G.C. J. Chem. Soc. D., 1969, 150–150. https://doi.org/10.1039/C29690000150

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).