SYNTHESIS AND ANTIOXIDANT PROPERTIES OF 1,3,4-OXADIAZOLE DERIVATIVES OF BENZOIC AND MONOHYDROXYBENZOIC ACIDS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

By interaction of benzoic acid hydrazides with orthoesters of carboxylic acids, 2-aryl- and 2-aryl-5-alkyl-1,3,4-oxadiazoles were synthesized, the antiradical action of which was studied in the reaction with 2,2-diphenyl-1-picrylhydrazyl (DPPH•). In the reaction with DPPH•, phenoloxadiazoles showed higher antiradical activity compared to the corresponding monohydroxybenzoic acids due to intramolecular synergism, which is realized as a result of the combined action of the phenol and oxadiazole fragments within one molecule, leading to resonance stabilization of the resulting phenoxyl radical. For 1,3,4-oxadiazoles, which do not contain a phenolic fragment in their composition and exhibit lower antiradical activity compared to phenoloxadiazoles, a mechanism of their antioxidant action has been proposed, which is associated with the formation of a radical adduct.

About the authors

I. E. Mikhailov

Institute of Physical and Organic Chemistry of Southern Federal University

Email: mie@sfedu.ru
ORCID iD: 0000-0003-1820-4012
Rostov-on-Don, Russia

N. I. Belaya

Donetsk State University

ORCID iD: 0000-0003-3359-3239
Donetsk, Russia

A. V. Belyi

Donetsk State University

ORCID iD: 0000-0001-6837-9211
Donetsk, Russia

Yu. M. Artyushkina

Institute of Physical and Organic Chemistry of Southern Federal University

ORCID iD: 0009-0009-1347-4479
Rostov-on-Don, Russia

G. A. Dushenko

Institute of Physical and Organic Chemistry of Southern Federal University

ORCID iD: 0000-0002-5455-8419
Rostov-on-Don, Russia

V. I. Minkin

Institute of Physical and Organic Chemistry of Southern Federal University

ORCID iD: 0000-0001-6096-503X
Rostov-on-Don, Russia

References

  1. Chaaban I., El Khawass El S.M., Abd El Razik H.A., El Salamouni N.S., Ghareeb D.A., Abdel Wahab A.E. Monatsh Chem. 2018, 149, 127–139. https://doi.org/10.1007/s00706-017-1983-z
  2. Pisoschi A.M., Pop A. Eur. J. Med. Chem. 2015, 97, 55–74. https://doi.org/10.1016/j.ejmech.2015.04.040
  3. Higgins L.G., Hayes J.D. Drug Metab. Rev. 2011, 43, 92–137. https://doi.org/10.3109/03602532.2011.567391
  4. Small D.M., Coombes J.S., Bennett N., Johnson D.W., Gobe G.C. Nephrology. 2012, 17, N 4, 311–321. https://doi.org/10.1111/j.1440-1797.2012.01572.x
  5. Griffiths K., Aggarwal B.B., Singh R.B., Buttar H.S., Wilson D., Meester F.D. Diseases. 2016, 4, 1–28. https://doi.org/10.3390/diseases4030028
  6. Lobo V., Patil A., Phatak A., Chandra N. Pharmacogn. Rev. 2010, 4, 118–126. https://doi.org/10.4103/0973-7847.70902
  7. Ali S., Kasoju S.N., Luthra A., Singh A., Sharanabasa-va H., Bora U. Food Res. Int. 2008, 41, 1–15. https://doi.org/10.1016/j.foodres.2007.10.001
  8. Mancuso C., Santangelo R. Food Chem. Toxicol. 2014, 65. 185–195. https://doi.org/10.1016/j.fct.2013.12.024
  9. AL Zahrani N.A., El-Shishtawy R.M., Asiri A.M. Eur. J. Med. Chem. 2020, 204, 112609. https://doi.org/10.1016/j.ejmech.2020.112609
  10. Harini S.T., Kumar H.V., Rangaswamy J., Naik N. Bioorg. Med. Chem. Lett. 2012, 22, 7588–7592. https://doi.org/10.1016/j.bmcl.2012.10.019
  11. Ivanovic´ N., Jovanovic´ L., Markovic´ Z., Marko-vic´ V., Joksovic´ M.D., Milenkovic´ D., Djurdjevic´ P.T., C´iric´ A., Joksovic L. ChemistrySelect. 2016, 1, 3870–3878. https://doi.org/10.1002/slct.201600738
  12. Takao K., Toda K., Saito T., Sugita Y. Chem. Pharm. Bull. 2017, 65, 1020–1027. https://doi.org/10.1248/cpb.c17-00416
  13. Luczynski M., Kudelko A. Appl. Sci. 2022, 12, 3756. https://doi.org/10.3390/app12083756
  14. Mikhailov I.E., Popov L.D., Tkachev V.V., Aldoshin S.M., Dushenko G.A., Revinskii Yu.V., Minkin V.I. J. Mol. Struct. 2018, 1157, 374–380. https://doi.org/10.1016/j.molstruc.2017.12.043
  15. Mikhailov I.E., Dushenko G.A., Gurskii M.E., Vikrischuk N.I., Popov L.D., Revinskii Yu.V., Lyssen-ko K.A., Minkin V.I. Polyhedron. 2019, 166, 73–82. https://doi.org/10.1016/j.poly.2019.03.044
  16. Mikhailov I.E., Artyushkina Yu.M., Dushenko G.A., Minkin V.I. Russ. Chem. Bull. (Int. Ed.). 2020, 69, 2302–2306.. https://doi.org/10.1007/s11172-020-3039-5
  17. Paruch K., Popiołek Ł., Wujec M. Med. Ch. Res. 2020, 1–16. https://doi.org/10.1007/s00044-019-02463-w
  18. Rabie A.M. Chem. Biol. Interact. 2021, 343, 109480. https://doi.org/10.1016/j.cbi.2021.109480
  19. Rabie A.M. J. Mol. Struct. 2021, 1246, 131106. https://doi.org/10.1016/j.molstruc.2021.131106
  20. Guimaraes C.R., Boger D.L., Jorgensen W.L. J. Am. Chem. Soc. 2005, 127, 17377–17384. https://doi.org/10.1021/ja055438j
  21. Rana S.M., Islam M., Saeed H., Rafique H., Majid M., Aqeel M.T., Imtiaz F., Ashraf Z. Pharmaceuticals. 2023, 16, 1045. https://doi.org/10.3390/ph16071045
  22. Mihailović N., Marković V., Matić I.Z., Stanisavljević N.S., Jovanović Ž.S., Trifunović S., Joksović L. RSC Adv. 2017, 7, 8550–8560. https://doi.org/10.1039/c6ra28787e
  23. Shakir R.M., Ariffin A., Abdulla M.A. Molecules. 2014, 19, 3436–3449. https://doi.org/10.3390/molecules19033436
  24. Rabie A.M., Tantawy A.S., Badr S.M.I. Am. J. Org. Chem. 2016, 6, 54–80. https://doi.org/10.5923/j.ajoc.20160602.02
  25. Singh G., Rani S., Arora A., Aulakh D., Wriedt M. New J. Chem. 2016, 40, 6200–6213. https://doi.org/10.1039/C6NJ00011H
  26. Kumar B.N.P., Mohana K.N., Mallesha L., Harish K.P. Inter. J. Med. Chem. 2013, 2013, 725673. https://doi.org/10.1155/2013/725673
  27. Chandrakantha B., Shetty P., Nambiyar V., Isloor N., Isloor A.M. Eur. J. Med. Chem. 2010, 45, 1206–1210. https://doi.org/10.1016/j.ejmech.2009.11.046
  28. Ainsworth C. J. Am. Chem. Soc. 1955, 77, 1148–1150. https://doi.org/10.1021/ja01610a019
  29. Lagunin A., Zakharov A., Filimonov D., Poroikov V. Mol. Inform. 2011, 30, 241–250. https://doi.org/10.1002/minf.201000151
  30. Singh R.P., Murthy K.N.C., Jayaprakasha G.K. J. Agr. Food Chem. 2002, 50, 81–86. https://doi.org/10.1021/jf010865b
  31. Belaya N.I., Belyi A.V., Davydova A.A. Kinetics and Catalysis. 2020, 61, 839–845.. https://doi.org/10.31857/S0453881120060039
  32. Milenković D., Đorović J., Petrović V., Avdović E., Marković Z. Reac. Kinet. Mech. Cat. 2018, 123, 215–230. https://doi.org/10.1007/s11144-017-1286-8
  33. Pandithavidana D.R., Jayawardana S.B. Molecules. 2019, 24, 1646. https://doi.org/10.3390/molecules24091646
  34. Litwinienko G., Ingold K.U. J. Org. Chem. 2005, 70, 8982–8990. https://doi.org/10.1021/jo051474p
  35. Valgimigli L., Banks J.T., Ingold K.U., Lusztyk J. J. Am. Chem. Soc. 1995, 117, 9966–9971. https://doi.org/10.1021/ja00145a005
  36. Lu Y., Wang A.H., Shi P., Zhang H., Li Z.S. PLoS ONE. 2015, 10, 0133259. https://doi.org/10.1371/journal.pone.0133259
  37. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Revision E.01. Wallingford CT. 2013.
  38. Armarego W.L.F., Chai C.L.L. Purification of Laboratory Chemicals. Burlington: Elsevier Science. 2003, 69.
  39. Сухарев А.Г., Тимохов А.В., Федоров В.В. Курс методов оптимизации. М: ФИЗМАТЛИТ. 2005, 256–265.
  40. Mikhailov I.E., Artyushkina Yu.M., Dushenko G.A., Minkin V.I. Russ. Chem. Bull. (Int. Ed.). 2020, 69, 176–178.. https://doi.org/10.1007/s11172-020-2741-7
  41. Mikhailov I.E., Artyushkina Yu.M., Dushenko G.A., Minkin V.I. Russ. J. Gen. Chem. 2020, 90, 2059–2063. https://doi.org/10.1134/s1070363220110079

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).