Interaction of Acelythynyl Pyrroles and Pyrrolyl Propynoates with Hydrazines: Synthesis of Pyrrolylethynyl Hydrazides and Pyrrol-Pyrazole Ensembles

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

2-Acelythynylpyrroles cyclize with hydrazines (hydrazine hydrate and phenylhydrazine, EtOH, 40°C, 0.5 h) to form pyrrolylpyrazoles in 63-95% yield. Unlike acelythynylpyrroles, pyrrolylpropynoates react with hydrazine hydrate and phenylhydrazine differently: interaction with hydrazine hydrate at a low temperature (EtOH, 0°C, 1 h) leads to the selective formation of pyrrolylethynylhydrazides (yield 90-97%), whereas under reflux (EtOH, 1 h) in reactions with hydrazine and phenylhydrazine pyrrolylpyrazolones or pyrrolylpyrazolones are formed (yield 88-97%).

About the authors

M. D. Gotsko

A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: gotsko@irioch.irk.ru
ORCID iD: 0000-0001-9136-5854
Irkutsk, Russia

I. V. Saliy

A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences

ORCID iD: 0000-0002-7303-8443
Irkutsk, Russia

D. N. Tomilin

A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences

ORCID iD: 0000-0001-8877-5799
Irkutsk, Russia

Yu. A. Ogloblina

A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences

ORCID iD: 0009-0002-1858-5273
Irkutsk, Russia

I. A. Ushakov

A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences

ORCID iD: 0000-0003-0176-1699
Irkutsk, Russia

References

  1. Li G., Cheng Y., Han C., Song C., Huang N., Du Y. RSC Med. Chem., 2022, 13, 1300–1321. https://doi.org/10.1039/d2md00206j
  2. Ríos M.-C., Portilla J. Chemistry (Basel), 2022, 4, 940–968. https://doi.org/10.3390/chemistry4030065
  3. Alam M.A. Future Med. Chem., 2023, 15, 2011–2023. https://doi.org/10.4155/fmc-2023-0207
  4. Portilla J. J. Heterocycl. Chem., 2024, 61, 2026–2039. https://doi.org/10.1002/jhet.4904
  5. Kumar P., Ghule V.D., Dharavath S. Dalton Trans., 2025, 54, 7194–7197. https://doi.org/10.1039/d5dt00730e
  6. Menezes R.A., Bhat K.S. SN Appl. Sci., 2025, 7, 137. https://doi.org/10.1007/s42452-025-06528-x
  7. Jones R.A. Chemistry of Heterocyclic Compounds: Pyrroles, Part One: The Synthesis and the Physical and Chemical Aspects of the Pyrrole Ring, 1990.
  8. Jones R.A. Chemistry of Heterocyclic Compounds: Pyrroles, Part 2: The Synthesis, Reactivity, and Physical Properties of Substituted Pyrroles, 1992.
  9. Jeelan Basha N., Basavarajaiah S.M., Shyamsunder K. Mol. Divers., 2022, 26, 2915–2937. https://doi.org/10.1007/s11030-022-10387-8
  10. Ganesh B.H., Raj A.G., Aruchamy B., Nanjan P., Drago C., Ramani P. ChemMedChem, 2024, 19, e202300447. https://doi.org/10.1002/cmdc.202300447
  11. Bulumulla C., Gunawardhana R., Gamage P.L., Mil-ler J.T., Kularatne R.N., Biewer M.C., Stefan M.C. ACS Appl. Mater. Interfaces, 2020, 12, 32209–32232. https://doi.org/10.1021/acsami.0c07161
  12. Zhao X.-Y., Zhang X., Yu H.-T., Liu Y., Pang S.-P., He C.-L. Energetic Mater. Front., 2025, 6, 67–73. https://doi.org/10.1016/j.enmf.2025.03.002
  13. Basarab G.S., Hill P.J., Rastagar A., Webborn P.J.H. Bioorg. Med. Chem. Lett., 2008, 18, 4716–4722. https://doi.org/10.1016/j.bmcl.2008.06.092
  14. Narule M.N., Gaidhane M.K., Gaidhane P.K. World J. Pharm. Res., 2014, 4, 1064–1073
  15. Le X., Gu Q., Xu J. RSC Adv., 2015, 5, 40536–40545. https://doi.org/10.1039/C5RA03079J
  16. Hallikeri C.S., Joshi S.D., Yenni B., Dixit S., Kulkar-ni V.H. Indian J. Heterocycl. Chem., 2017, 27, 17–23.
  17. Gong X., Li S., Huang J., Tan S., Zhang Q., Tian Y., Li Q., Wang L., Tong H.H.Y., Yao X., Chen C., Lee S.M.-Y., Liu H. Eur. J. Med. Chem., 2024, 279, 116812. https://doi.org/10.1016/j.ejmech.2024.116812
  18. Hohwy M., Spadola L., Lundquist B., Hawtin P., Dahmén J., Groth-Clausen I., Nilsson E., Persdot-ter S., von Wachenfeldt K., Folmer R.H.A., Edman K. J. Med. Chem., 2008, 51, 2178–2186. https://doi.org/10.1021/jm701509k
  19. Messore A., Corona A., Madia V.N., Saccoliti F., Tudino V., De Leo A., Scipione L., De Vita D., Amendola G., Di Maro S., Novellino E., Cosconati S., Métifiot M., Andreola M.-L., Valenti P., Esposito F., Grandi N., Tramontano E., Costi R., Di Santo R. ACS Med. Chem. Lett., 2020, 11, 798–805. https://doi.org/10.1021/acsmedchemlett.9b00617
  20. Zhu Y., Zhou M., Cheng X., Wang H., Li Y., Guo Y., Wang Y., Tian S., Mao T., Zhang Z., Li D., Hu Q., Li H. J. Med. Chem., 2023, 66, 6315–6332. https://doi.org/10.1021/acs.jmedchem.3c00210
  21. Chung C.W., Ping H.X. Patent WO2004014368A1, 2004.
  22. Naoaki K., Hiroaki I., Youichi K., Takashi I., Yuichi O. Patent WO2004069824A1, 2004.
  23. Du Z., Valtierra S., Cardona L.R., Dunne S.F., Luan C.-H., Li L. Cell Chem. Biol., 2019, 26, 1664–1680.e1664. https://doi.org/10.1016/j.chembiol.2019.10.004
  24. Karatas F., Coteli E., Aydin S., Servi S., Kara H. Biol. Trace Elem. Res., 2010, 136, 79–86. https://doi.org/10.1007/s12011-009-8517-4
  25. Nagarjuna U., Rekha T., Sreenivasulu T., Padmava-thi V., Padmaja A. Res. Chem. Intermed., 2018, 44, 4375–4396. https://doi.org/10.1007/s11164-018-3393-1
  26. Thormann M., Almstetter M., Treml A., Heiser U., Buchholz M., Niestroj A.J. Patent WO2008055945A1, 2008.
  27. Li S.-W., Liu Y., Sampson P.B., Patel N.K., Forrest B.T., Edwards L., Laufer R., Feher M., Ban F., Awrey D.E., Hodgson R., Beletskaya I., Mao G., Mason J.M., Wei X., Luo X., Kiarash R., Green E., Mak T.W., Pan G., Pauls H.W. Bioorg. Med. Chem. Lett., 2016, 26, 4625–4630. https://doi.org/10.1016/j.bmcl.2016.08.063
  28. Deng X., Wang H., Zeng T., Zhang T., Jiang T. Patent WO2018210314A1, 2018.
  29. Ranđelović I., Nyíri K., Koppány G., Baranyi M., Tóvári J., Kigyós A., Tímár J., Vértessy B.G., Grolmusz V. Int. J. Mol. Sci., 2024, 25, 2572.
  30. Chen H., Yu Z.-c., Deng W., Jiang X.-f., Yu S.-y. Wuji Huaxue Xuebao, 2017, 33, 939–946. https://doi.org/10.11862/cjic.2017.090
  31. Katsiaouni S., Dechert S., Brückner C., Meyer F. Chem. Commun., 2007, 951–953. https://doi.org/10.1039/B614049A
  32. Pourjavid M.R., Sehat A.A., Arabieh M., Yousefi S.R., Hosseini M.H., Rezaee M. Mater. Sci. Eng. C, 2014, 35, 370–378. https://doi.org/10.1016/j.msec.2013.11.029
  33. Yang Z., Zhang K., Gong F., Li S., Chen J., Ma J.S., Sobenina L.N., Mikhaleva A.I., Trofimov B.A., Yang G. J. Photochem., 2011, 217, 29–34. https://doi.org/10.1016/j.jphotochem.2010.09.012
  34. Maeda H., Ito Y., Kusunose Y., Nakanishi T. Chem. Commun., 2007, 1136–1138. https://doi.org/10.1039/B615787D
  35. Tomilin D.N., Petrushenko K.B., Sobenina L.N., Gotsko M.D., Ushakov I.A., Skitnevskaya A.D., Trofimov A.B., Trofimov B.A. Asian J. Org. Chem., 2016, 5, 1288–1294. https://doi.org/10.1002/ajoc.201600303
  36. Tomilin D.N., Shurygina I.A., Trukhan I.S., Dremina N.N., Sobenina L.N., Trofimov B.A., Shurygin M.G. Patent RU2717308C1, 2019.
  37. Trukhan I.S., Tomilin D.N., Dremina N.N., Sobenina L.N., Shurygin M.G., Petrushenko K.B., Petrushenko I.K., Trofimov B.A., Shurygina I.A. Molecules, 2022, 27, 5018. https://doi.org/10.3390/molecules27155018
  38. Krasavin M., Konstantinov I. Lett. Org. Chem., 2008, 5, 594–598. https://doi.org/10.2174/157017808785982266
  39. Hassaneen H.M.E. Chem. Inf., 2008, 39. https://doi.org/10.1002/chin.200811117
  40. Saito K., Sato T., Ishihara H., Takahashi K. Bull. Chem. Soc. Jpn., 1989, 62, 1925–1929. https://doi.org/10.1246/bcsj.62.1925
  41. Maeda H., Chigusa K., Yamakado R., Sakurai T., Seki S. Chem. Eur. J., 2015, 21, 9520–9527. https://doi.org/10.1002/chem.201500681
  42. Frizzo C.P., Marzari M.R.B., Buriol L., Moreira D.N., Rosa F.A., Vargas P.S., Zanatta N., Bonacorso H.G., Martins M.A.P. Catal. Commun., 2009, 10, 1967–1970. https://doi.org/10.1016/j.catcom.2009.07.005
  43. Sobenina L.N., Mikhaleva A.I., Petrova O.V., Toryashinova D.-S.D., Larina L.I., Ilicheva L.N., Trofimov B.A. Russ. J. Org. Chem., 1999, 35, 1241–1245.
  44. Sobenina L.N., Demenev A.P., Mikhaleva A.I., Petrova O.V., Larina L.I., Chernykh G.P., Toryashinova D.-S.D., Vashchenko A.V., Trofimov B.A. Sulfur Lett., 2000, 24, 1–12.
  45. Ameziane El Hassani I., Rouzi K., Assila H., Karrouchi K., Ansar M.H. Reactions, 2023, 4, 478–504. https://doi.org/10.3390/reactions4030029
  46. Sagitova E.F., Tomilin D.N., Petrova O.V., Budaev A.B., Sobenina L.N., Trofimov B.A., Yang G., Hu R. Mendeleev Commun., 2019, 29, 658–660. https://doi.org/10.1016/j.mencom.2019.11.018
  47. Trofimov B.A., Stepanova Z.V., Sobenina L.N., Mikhaleva A.I., Ushakov I.A. Tetrahedron Lett., 2004, 45, 6513–6516. https://doi.org/10.1016/j.tetlet.2004.06.114
  48. Sobenina L.N., Tomilin D.N., Petrova O.V., Gulia N., Osowska K., Szafert S., Mikhaleva A.I., Trofimov B.A. Russ. J. Org. Chem., 2010, 46, 1373–1377. https://doi.org/10.1134/s1070428010090186

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).