Late-Stage C–H Functionalization of Nimesulide via (Nimesulide)(3,5-Dimethyl-4-Isoxazoly)Jodonium Salt Formation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The reaction of N-methylated Nimesulide with Koiser’s reagent based on 4-iodo-3,5-dimethylisoxazole (DMIX-I(OH)OTs) yielded the corresponding iodonium salt. The interaction of this salt with S, O, and N-nucleophiles resulted in the production of functionalized derivatives of Nimesulide.

About the authors

D. I. Bugaenko

Moscow State University

Email: bugaenko@org.chem.msu.ru
ORCID iD: 0000-0002-5028-7244
Moscow, Russia

A. V. Karchava

Moscow State University

Email: karchava@org.chem.msu.ru
ORCID iD: 0000-0001-9008-644X
Moscow, Russia

References

  1. Guillemard L., Kaplaneris N., Ackermann L., Johansson M.J., Nat. Rev. Chem., 2021, 5, 522. https://doi.org/10.1038/s41570-021-00300-6
  2. Castellino N.J., Montgomery A.P., Danon J.J., Kassiou M., Chem. Rev., 2023, 123, 8127. https://doi.org/10.1021/acs.chemrev.2c00797
  3. Shim S.Y., Chem. Eur. J., 2023, 29, e202302620. https://doi.org/10.1002/chem.202302620
  4. Wang Y., Dana S., Long H., Xu Y., Li Y., Kaplaneris N., Ackermann L., Chem. Rev., 2023, 123, 11269. https://doi.org/10.1021/acs.chemrev.3c00158
  5. Cannalire R., Pelliccia S., Sancineto L., Novellino E., Tron G.C., Giustiniano M., Chem. Soc. Rev., 2021, 50, 766. https://doi.org/10.1039/D0CS00493F
  6. Volkov A.A., Bugaenko D.I., Karchava A.V., ChemCatChem, 2024, 16, e202301526. https://doi.org/10.1002/cctc.202301526
  7. Wu X., Gao P., Chen F., Eur. J. Org. Chem., 2023, 26, e202300864. https://doi.org/10.1002/ejoc.202300864
  8. Timmann S., Feng Z., Alcarazo M., Chem. Eur. J., 2024, 30, e202402768. https://doi.org/10.1002/chem.202402768
  9. Meng H., Liu M.-S., Shu W., Chem. Sci., 2022, 13, 13690. https://doi.org/10.1039/D2SC04507A
  10. Juliá F., Shao Q., Duan M., Plutschack M.B., Berger F., Mateos J., Lu C., Xue X.-S., Houk K.N., Ritter T., J. Am. Chem. Soc., 2021, 143, 16041. https://doi.org/10.1021/jacs.1c06281
  11. Pentsak E.O., Eremin D.B., Gordeev E.G., Anani-kov V.P., ACS Catal., 2019, 9, 3070. https://doi.org/10.1021/acscatal.9b00294
  12. Beletskaya I.P., Ananikov V.P., Chem. Rev., 2022, 122, 16110. https://doi.org/10.1021/acs.chemrev.1c00836
  13. Dohi T., Elboray E.E., Kikushima K., Morimoto K., Kita Y., Chem. Rev., 2025, 125, 3440. https://doi.org/10.1021/acs.chemrev.4c00808
  14. Mamgain R., Sakthivel K., Singh F.V., Beilstein J. Org. Chem., 2024, 20, 2891. https://doi.org/10.3762/bjoc.20.243
  15. Bugaenko D.I., Karchava A.V., Adv. Synth. Catal., 2023, 365, 1893. https://doi.org/10.1002/adsc.202300351
  16. Bugaenko D.I., Volkov A.A., Karchava A.V., J. Org. Chem., 2023, 88, 9968. https://doi.org/10.1021/acs.joc.3c00734
  17. Bugaenko D.I., Tikhanova O.A., Andreychev V.V., Karchava A.V., J. Org. Chem., 2024, 89, 9923. https://doi.org/10.1021/acs.joc.4c00768
  18. Bugaenko D.I., Volkov A.A., Andreychev V.V., Karchava A.V., Org. Lett., 2023, 25, 272. https://doi.org/10.1021/acs.orglett.2c04143
  19. Bugaenko D.I., Malashchenko N.A., Kopytov S.O., Lukonina N.S., Karchava A.V., Org. Lett., 2024, 26, 3189. https://doi.org/10.1021/acs.orglett.4c00797
  20. Chen Y., Gu Y., Meng H., Shao Q., Xu Z., Bao W., Gu Y., Xue X.S., Zhao Y., Angew. Chem. Int. Ed., 2022, 61, e202201240. https://doi.org/10.1002/anie.202201240
  21. Meher P., Panda S.P., Mahapatra S.K., Thombare K.R., Roy L., Murarka S., Org. Lett., 2023, 25, 8290. https://doi.org/10.1021/acs.orglett.3c03365
  22. McCammant M.S., Thompson S., Brooks A.F., Krska S.W., Scott P.J.H., Sanford M.S., Org. Lett., 2017, 19, 3939. https://doi.org/10.1021/acs.orglett.7b01902
  23. Hu C., Jia Q., Bao W., Gu G., Li Y., Zhao Y., Org. Lett., 2024, 26, 7864. https://doi.org/10.1021/acs.orglett.4c02703
  24. Zhou J., Bao Z., Wu P., Chen C., Molecules, 2021, 26, 3240. https://doi.org/10.3390/molecules26113240
  25. Zhou J., Bao Z., Wu P., Chen C., Synthesis, 2022, 54, 1388. https://doi.org/10.1055/a-1679-7753
  26. Bugaenko D.I., Karchava A.V., Adv. Synth. Catal., 2022, 364, 2248. https://doi.org/10.1002/adsc.202200309
  27. Bugaenko D.I., Volkov A.A., Livantsov M.V., Yurovskaya M.A., Karchava A.V., Chem. Eur. J., 2019, 25, 12502. https://doi.org/10.1002/chem.201902955
  28. Seidl T.L., Sundalam S.K., McCullough B., Stuart D.R., J. Org. Chem., 2016, 81, 1998. https://doi.org/10.1021/acs.joc.5b02833
  29. Hatton J., Stuart D.R., Org. Lett., 2025, 27, 1130. https://doi.org/10.1021/acs.orglett.4c04582
  30. Umierski N., Manolikakes G., Org. Lett., 2013, 15, 188. https://doi.org/10.1021/ol303248h
  31. Parida S.K., Jaiswal S., Singh P., Murarka S., Org. Lett., 2021, 23, 6401. https://doi.org/10.1021/acs.orglett.1c02220
  32. Reitti M., Villo P., Olofsson B., Angew. Chem. Int. Ed., 2016, 128, 9074. https://doi.org/10.1002/ange.201603175

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Дополнительные материалы к статье
Download (958KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).