Synthesis of Spacered Disaccharides Structurally Related to the Fucosylated Chondroitin Sulfates from Sea Cucumbers Holothuria nobilis and Psolus peronii

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The synthesis of selectively 3,4’,6’-tri- and 3,4,4’,6’-tetra-O-sulfated derivatives of the aminopropyl glycoside of the disaccharide α-D-GalNAc-(1–2)-α-L-Fuc (1 and 2), structurally related to highly unusual carbohydrate chain fragments of hexosaminoglycans found in the side chains of fucosylated chondroitin sulfates (FCS) from sea cucumbers Holothuria nobilis and Psolus peronii, is described. Spacered disaccharides 1 and 2 were obtained via a common synthetic route involving selectively protected L-fucose and phenyl-1-seleno-2-azido-2-deoxygalactose building blocks, the latter synthesized by azidophenylselenylation of triacetylgalactal. Target compounds 1 and 2 will be used as model structures to identify the pharmacophoric elements within these FCS that are responsible for their biological activity.

About the authors

Z. V. Serpokrylov

D.I. Mendeleev University of Chemical Technology of Russia; N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Moscow, Russia; Moscow, Russia

D. V. Yashunsky

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Moscow, Russia

E. V. Sukhova

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Moscow, Russia

V. B. Krylov

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Moscow, Russia

N. E. Nifantiev

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: nen@ioc.ac.ru
Moscow, Russia

References

  1. Liu X., Liu Y., Hao J., Zhao X., Lang Y., Fan F., Yu G. Molecules, 2016, 21(5), 625. https://doi.org/10.3390/molecules21050625
  2. Kiselevskiy M.V., Anisimova N.Yu., Ustyuzhanina N.E., Vinnitskiy D.Z., Tokatly A.I., Reshetnikova V.V., Chikileva I.O., Shubina I.Zh., Kirgizov K.I., Nifantiev N.E. Int. J. Mol. Sci., 2022, 23, 11821. https://doi.org/10.3390/ijms231911821
  3. Shakouri A., Nematpour F., Adibpour N., Ameri A. Environ. Stud. Pers. Gulf, 2014, 1(2), 135–140. https://doi.org/10.5812/jjm.8708
  4. Ustyuzhanina N.E., Bilan M.I., Dmitrenok A.S., Silchenko A.S., Grebnev B.B., Stonik V.A., Usov A.I. Mar. Drugs, 2020, 18(11), 540. https://doi.org/10.3390/md18110540
  5. Li S., Li J., Zhi Z., Wei C., Wang W., Ding T., Chen S. Carbohydr. Polym., 2017, 173, 330–337. https://doi.org/10.1016/j.carbpol.2017.05.056
  6. Wang J., Hu S., Jiang W., Song W., Cai L., Wang J. Int. Immunopharmacol., 2016, 31, 15–23. https://doi.org/10.1016/j.intimp.2015.12.024
  7. Ustyuzhanina N.E., Bilan M.I., Panina E.G., Sanamyan N.P., Dmitrenok A.S., Tsvetkova E.A., Ushakova N.A., Shashkov A.S., Nifantiev N.E., Usov A.I. Mar. Drugs, 2018, 16, 389. https://doi.org/10.3390/md16100389
  8. Chikileva I.O., Bruter A.V., Persiyantseva N.A., Zamkova M.A., Vlasenko R.Ya., Dolzhikova Y.I., Shubina I.Zh., Donenko F.V., Lebedinskaya O.V., Sokolova D.V., Pokrovsky V.S., Fedorova P.O., Ustyuzhanina N.E., Anisimova N.Yu., Nifantiev N.E., Kiselevskiy M.V. Biomedicines, 2023, 11, 2563. https://doi.org/10.3390/biomedicines11092563
  9. Ustyuzhanina N.E., Anisimova N.Y., Bilan M.I., Donenko F.V., Morozevich G.E., Yashunskiy D.V., Nifantiev N.E. Pharmaceuticals, 2021, 14(11), 1074. https://doi.org/10.3390/ph14111074
  10. Ustyuzhanina N.E., Bilan M.I., Anisimova N.Y., Nikogosova S.P., Dmitrenok A.S., Tsvetkova E.A., Nifantiev N.E. Pharmaceuticals, 2023, 16(12), 1673. https://doi.org/10.3390/ph16121673
  11. Senbanjo L.T., Chellaiah M.A. Front. Cell Dev. Biol., 2017, 5, 18. https://doi.org/10.3389/fcell.2017.00018
  12. Aapro M.S., Cameron D.A., Pettengell R., Bohlius J., Crawford J., Ellis M., Kearney N., Lyman G.H., Tjan-Heijnen V.C., Walewski J., Weber D.C., Zielinski C. Eur. J. Cancer, 2006, 42(15), 2433–2453. https://doi.org/10.1016/j.ejca.2006.05.002
  13. Link H. Support. Care Cancer, 2022, 30(9), 7067–7077. https://doi.org/10.1007/s00520-022-07103-5
  14. Cornish A.L., Campbell I.K., McKenzie B.S., Chatfield S., Wicks I.P. Nat. Rev. Rheumatol., 2009, 5(10), 554–559. https://doi.org/10.1038/nrrheum.2009.181
  15. Crobu D., Spinetti G., Schrepfer R., Tonon G., Jotti G.S., Onali P., Di Stefano A. BMC Pharmacol. Toxicol., 2014, 15, 1–13. https://doi.org/10.1186/2050-6511-15-1
  16. Karagiannidis I., Salataj E., Egal E.S.A., Beswick E.J. Cytokine, 2021, 142, 155479. https://doi.org/10.1016/j.cyto.2021.155479
  17. Ustyuzhanina N.E., Bilan M.I., Dmitrenok A.S., Tsvetkova E.A., Nikogosova S.P., Hang C.T.T., Nifantiev N.E. Mar. Drugs, 2022, 20(6), 380. https://doi.org/10.3390/md20060380
  18. Pomin V.H. Mar. Drugs, 2014, 12(1), 232–254. https://doi.org/10.3390/md12010232
  19. Ustyuzhanina N.E., Bilan M.I., Dmitrenok A.S., Borodina E.Y., Stonik V.A., Nifantiev N.E., Usov A.I. Carbohydr. Polym., 2017, 164, 8–12. https://doi.org/10.1016/j.carbpol.2017.01.034
  20. Li S., Zhong W., Pan Y., Lin L., Cai Y., Mao H., Zhao J. Carbohydr. Polym., 2021, 269, 118290. https://doi.org/10.1016/j.carbpol.2021.118290
  21. Yang J., Wang Y., Jiang T., Lv Z. Int. J. Biol. Macromol., 2015, 72, 911–918. https://doi.org/10.1016/j.ijbiomac.2014.10.010
  22. Ustyuzhanina N.E., Bilan M.I., Dmitrenok A.S., Shashkov A.S., Nifantiev N.E., Usov A.I. Carbohydr. Polym., 2017, 165, 7–12. https://doi.org/10.1016/j.carbpol.2017.02.003
  23. Mironov Y.V., Sherman A.A., Nifantiev N.E. Tetra-hedron Lett., 2004, 45, 9107–9110. https://doi.org/10.1016/j.tetlet.2004.10.022
  24. Bedini E., Cirillo L., Parrilli M. Carbohydr. Res., 2012, 349, 24–32. https://doi.org/10.1016/j.carres.2011.12.007
  25. Takeo K., Aspinall G.O., Brennan P.J., Chatterjee D. Carbohydr. Res., 1986, 150, 133–150. https://doi.org/10.1016/0008-6215(86)80011-8
  26. Khatuntseva E.A., Ustyuzhanina N.E., Zatonskii G.V., Shashkov A.S., Usov A.I., Nifantiev N.E., J. Carbohydr. Chem., 2000, 19, 1151–1173. https://doi.org/10.1080/07328300008544140
  27. Khatuntseva E.A., Sherman A.A., Tsvetkov Y.E., Nifantiev N.E. Tetrahedron Lett., 2015, 57, 708–711. https://doi.org/10.1016/j.tetlet.2015.12.006
  28. Kazakova E.D., Yashunsky D.V., Krylov V.B., Bouchara J.-P., Cornet M., Valsecchi I., Fontaine T., Latgé J.-P., Nifantiev N.E. J. Am. Chem. Soc., 2020, 142, 1175–1179. https://doi.org/10.1021/jacs.9b11703
  29. Gambaryan A.S., Tuzikov A.B., Byramova N.E., Bovin N.V., Piskarev V.E., Nifant'ev N.E., Matrosovich M.N. FEBS Lett., 1995, 366, 57–60. https://doi.org/10.1016/0014-5793(95)00488-U

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).