Reactivity features of ortho-Carboranillithium towards 3,6-Diaryl-1,2,4,5-Tetrazines

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The reaction of ortho-carboranillithium with 3,6-di(2-pyridyl)-1,2,4,5-tetrazine, considered as an example of the “from challenging to simple” strategy in the chemistry of carbonanes, leads to the previously unknown 3-ortho-carboranyl-[1,2,3]triazolo[1,5-a]pyridine as a result of cleavage of the tetrazine cycle and subsequent formation of the triazole cycle with nitrogen elimination. The structure of the obtained compound was confirmed by the spectroscopic and X-ray diffraction studies. The reaction mechanism, which was additionally confirmed by quantum-chemical calculations of electron densities and the Fukui function, was proposed.

About the authors

T. D. Moseev

Institute of Chemical Engineering, Ural Federal University; I.Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences; South Ural State University

Email: timofey.moseev@urfu.ru
Yekaterinburg, Russia; Yekaterinburg, Russia; Chelyabinsk, Russia

D. S. Kopchuk

Institute of Chemical Engineering, Ural Federal University; I.Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences; South Ural State University

Yekaterinburg, Russia; Yekaterinburg, Russia; Chelyabinsk, Russia

L. A. Smyshliaeva

Institute of Chemical Engineering, Ural Federal University; I.Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences; South Ural State University

Yekaterinburg, Russia; Yekaterinburg, Russia; Chelyabinsk, Russia

A. N. Tsmokaluk

Institute of Chemical Engineering, Ural Federal University; I.Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences; South Ural State University

Yekaterinburg, Russia; Yekaterinburg, Russia; Chelyabinsk, Russia

P. A. Slepukhin

Institute of Chemical Engineering, Ural Federal University; I.Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences; South Ural State University

Yekaterinburg, Russia; Yekaterinburg, Russia; Chelyabinsk, Russia

A. V. Rybakova

Institute of Chemical Engineering, Ural Federal University; I.Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences; South Ural State University

Yekaterinburg, Russia; Yekaterinburg, Russia; Chelyabinsk, Russia

G. V. Zyryanov

Institute of Chemical Engineering, Ural Federal University; I.Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences; South Ural State University

Yekaterinburg, Russia; Yekaterinburg, Russia; Chelyabinsk, Russia

M. V. Varaksin

Institute of Chemical Engineering, Ural Federal University; I.Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences; South Ural State University

Yekaterinburg, Russia; Yekaterinburg, Russia; Chelyabinsk, Russia

V. N. Charushin

Institute of Chemical Engineering, Ural Federal University; I.Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences; South Ural State University

Yekaterinburg, Russia; Yekaterinburg, Russia; Chelyabinsk, Russia

O. N. Chupakhin

Institute of Chemical Engineering, Ural Federal University; I.Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences; South Ural State University

Yekaterinburg, Russia; Yekaterinburg, Russia; Chelyabinsk, Russia

References

  1. Marfavi A., Kavianpour P., Rendina L.M., Nat. Rev. Chem., 2022, 6 (7), 486–504. https://doi.org/10.1038/s41570-022-00400-x
  2. Planas J., Teixidor F., Viñas C., Crystals (Basel), 2016, 6 (5), 50. https://doi.org/10.3390/cryst6050050
  3. Mukherjee S., Thilagar P., Chem. Commun. (Camb.), 2016, 52 (6), 1070–1093. https://doi.org/10.1039/c5cc08213g
  4. Konovalov A.I., Russ. J. Org. Chem., 2018, 54 (2), 157–371. https://doi.org/10.1134/s107042801802001x
  5. Las’kova Y.N., Serdyukov A.A., Sivaev I.B., Russ. J. Inorg. Chem., 2023, 68 (6), 621–643. https://doi.org/10.1134/s0036023623600612
  6. Scholz M., Blobaum A.L., Marnett L.J., Hey-Hawkins E., Bioorg. Med. Chem., 2012, 20 (15), 4830–4837. https://doi.org/10.1016/j.bmc.2012.05.063
  7. Smyshliaeva L.A., Varaksin M.V., Charushin V.N., Chupakhin O.N., Synthesis (Mass.), 2020, 52 (3), 337–352. https://doi.org/10.1055/s-0039-1690733
  8. Lipunova G.N., Nosova E.V., Zyryanov G.V., Charushin V.N., Chupakhin O.N., Org. Chem. Front., 2021, 8 (18), 5182–5205. https://doi.org/10.1039/d1qo00465d
  9. Tolshchina S.G., Russ. Chem. Bull., 2011, 60 (5), 985–991. https://doi.org/10.1007/s11172-011-0155-2
  10. Genady A.R., Tan J., El-Zaria M.E., Zlitni A., Janzen N., Valliant J.F., J. Organomet. Chem., 2015, 791, 204–213. https://doi.org/10.1016/j.jorganchem.2015.05.033
  11. Galliamova L.A., Varaksin M.V., Chupakhin O.N., Slepukhin P.A., Charushin V.N., Organometallics, 2015, 34 (21), 5285–5290. https://doi.org/10.1021/acs.organomet.5b00736
  12. Li Y., Zhao P., Jia C., Sun N., Ma Y.-N., Duan Z., Organometallics, 2024, 43 (10), 1077–1084. https://doi.org/10.1021/acs.organomet.3c00516
  13. Chupakhin O.N., Russ. Chem. Bull., 2004, 53 (6), 1223–1231. https://doi.org/10.1023/b:rucb.0000042277.99035.a8
  14. Moseev T.D., Žurnal obŝej himii, 2024, 94 (6), 705–711. https://doi.org/10.31857/s0044460x24060048
  15. Neese F., “Software update: The ORCA program system—Version 5.0,” Wiley Interdiscip. Rev. Comput. Mol. Sci., 2022, 12 (5). https://doi.org/10.1002/wcms.1606
  16. Najibi A., Goerigk L., J. Chem. Theory Comput., 2018, 14 (11), 5725–5738. https://doi.org/10.1021/acs.jctc.8b00842
  17. Weigend F., Ahlrichs R., Phys. Chem. Chem. Phys., 2005, 7 (18), 3297–3305. https://doi.org/10.1039/b508541a
  18. Weigend F., Phys. Chem. Chem. Phys., 2006, 8 (9), 1057–1065. https://doi.org/10.1039/b515623h
  19. Parr R.G., Yang W., J. Am. Chem. Soc., 1984, 106 (14), 4049–4050. https://doi.org/10.1021/ja00326a036
  20. Becke A.D., J. Chem. Phys., 1993, 98 (7), 5648–5652. https://doi.org/10.1063/1.464913
  21. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery Jr. J.A., Vreven T., Kudin K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G.A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J.E., Hratchian H.P., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Ayala P.Y., Morokuma K., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J.V., Cui Q., Baboul A.G., Clifford S., Cioslow-ski J., Stefanov B.B., Liu G., Liashenko A., Pis-korz P., Komaromi I., Martin R.L., Fox D.J., Keith T., Al-Laham M.A., Peng C.Y., Nanayakkara A., Challacombe M., Gill P.M.W., Johnson B., Chen W., Wong M.W., Gonzalez C., Pople J.A., Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford CT, 2004.
  22. Hu W.-X., Rao G.-W., Sun Y.-Q., Bioorg. Med. Chem. Lett., 2004, 14 (5), 1177–1181. https://doi.org/10.1016/j.bmcl.2003.12.056
  23. Bakkali H., European J. Org. Chem., 2008, 2008 (12), 2156–2166. https://doi.org/10.1002/ejoc.200701115
  24. Santos T., Angew. Chem. Int. Ed Engl., 2021, 60 (34), 18783–18791. https://doi.org/10.1002/anie.202106230
  25. Tolshchina S.G., Rusinov G.L., Charushin V.N., Chem. Heterocycl. Compd. (N. Y.), 2013, 49 (1), 66–91. https://doi.org/10.1007/s10593-013-1232-2
  26. Choi S.-K., Kim J., Kim E., Molecules, 2021, 26 (7), 1868. https://doi.org/10.3390/molecules26071868
  27. Wang X.-R., Xing J., Yan C.-X., Cheng Y., Org. Biomol. Chem., 2012, 10 (5), 970–977. https://doi.org/10.1039/c1ob06595e
  28. Neymash A.O., Molecules, 2023, 29 (1). https://doi.org/10.3390/molecules29010134
  29. Savateev K.V., Gazizov D.A., Slepukhin P.A., Ulomsky E.N., Rusinov V.L., European J. Org. Chem., 2024, 27 (32). https://doi.org/10.1002/ejoc.202400426
  30. Thalladi V.R., Gehrke A., Boese R., New Journal of Chemistry, 2000, 24 (6), 463–470. https://doi.org/10.1039/b001843k
  31. Yamagishi H., Science, 2018, 361 (6408), 1242–1246. https://doi.org/10.1126/science.aat6394
  32. Mascal M., Chem. Comm., 1998, (3), 303–304. https://doi.org/10.1039/a707702e
  33. Vallcorba O., Adam R., Rius J., Ballesteros R., Amigó J.M., Abarca B., Powder Diffr., 2014, 29 (4), 331–336. https://doi.org/10.1017/s0885715614000402
  34. Li Y., Sun C., Zhang R., Acta Crystallogr. Sect. E Struct. Rep. Online, 2013, 69 (Pt 12), o1812. https://doi.org/10.1107/S1600536813031152
  35. Abarca B., Aucejo R., Ballesteros R., Chadlaoui M., García-España E., Ramirez de Arellano C., ARKIVOC, 2005, (14), 71. https://doi.org/10.3998/ark.5550190.0006.e08
  36. Mantina M., Chamberlin A.C., Valero R., Cramer C.J., Truhlar D.G., J. Phys. Chem. A, 2009, 113 (19), 5806–5812. https://doi.org/10.1021/jp8111556

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).