Theoretical study of electronic structure and ionization spectrum of γ-pyrone

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The electronic structure and ionization spectrum of γ-pyrone (4 H -pyran-4-one) were studied using the third-order algebraic-diagrammatic construction method for a one-particle Green’s function [IP-ADC(3)] and a number of other high-level quantum chemical methods. The results of the calculations are used to interpret the recently obtained photoelectron spectra. A number of new assignments are proposed concerning the nature of the photoelectron maxima of γ-pyrone above 12 eV, where, according to our calculations, there is a significant violation of the single-electron ionization picture due to electron correlation effects. The results obtained significantly change the interpretation of the spectrum available in the literature.

About the authors

A. B Trofimov

A.E. Favorsky Irkutsk Institute of Chemistry, Syberian Branch of the Russian Academy of Sciences;Irkutsk State University

Email: abtrof@mail.ru

E. K Iakimova

Irkutsk State University

E. V Gromov

Irkutsk State University;Max-Planck Institute for Medical Research

A. D Skitnevskaya

Irkutsk State University

References

  1. Wilk W., Waldmann H., Kaiser M. Bioorg. Med. Chem. 2009, 17, 2304-2309. doi: 10.1016/j.bmc.2008.11.001
  2. Lauridsen J.M.V., Kragh R.R., Lee J.-W. Comprehensive Heterocyclic Chemistry IV. New York: Elsevier. 2022, 329-490. doi: 10.1016/B978-0-12-818655-8.00005-6
  3. Xu Y.-L., Teng Q.-H., Tong W., Wang H.-S., Pan Y.-M., Ma X.-L. Molecules. 2017, 22, 109. doi: 10.3390/molecules22010109
  4. Zantioti-Chatzouda E.-M., Kotzabasaki V., Stratakis M. J. Org. Chem. 2022, 87, 8525-8533. doi: 10.1021/acs.joc.2c00627
  5. Peng X.-P., Li G., Ji L.-X., Li Y.-X., Lou H.-X. Nat. Prod. Res. 2020, 34, 1091-1096. doi: 10.1080/14786419.2018.1548462
  6. Gotsko M.D., Saliy I.V., Sobenina L.N., Ushakov I.A., Trofimov B.A. Tetrahedron Lett. 2019, 60, 151126. doi: 10.1016/j.tetlet.2019.151126
  7. Gotsko M.D., Saliy I.V., Sobenina L.N., Ushakov I.A., Kireeva V.V., Trofimov B.A. Synthesis (Stuttg). 2022, 54, 1134-1144. doi: 10.1055/a-1681-4164
  8. Palmer M.H., Coreno M., De Simone M., Grazioli C., Jones N.C., Hoffmann S.V., Aitken R.A., Sonecha D.K. J. Chem. Phys. 2023, 158, 014304. doi: 10.1063/5.0128764
  9. Cederbaum L.S., Domcke W., Schirmer J., Von Niessen W. Adv. Chem. Phys. 1986, 65, 115. doi: 10.1002/9780470142899.ch3
  10. Nakatsuji H., Hirao K. J. Chem. Phys. 1978, 68, 2053-2065. doi: 10.1063/1.436028
  11. Nakatsuji H. Chem. Phys. Lett. 1979, 67, 334-342. doi: 10.1016/0009-2614(79)85173-8
  12. Ehara M., Hasegawa J., Nakatsuji H. Theory and Applications of Computational Chemistry. New York: Elsevier. 2005, 1099-1141. doi: 10.1016/B978-044451719-7/50082-2
  13. Schirmer J., Cederbaum L.S., Walter O. Phys. Rev. A. 1983, 28, 1237-1259. doi: 10.1103/PhysRevA.28.1237
  14. Schirmer J., Trofimov A.B., Stelter G. J. Chem. Phys. 1998, 109, 4734-4744. doi: 10.1063/1.477085
  15. Dempwolff A.L., Paul A.C., Belogolova A.M., Trofimov A.B., Dreuw A. J. Chem. Phys. 2020, 152, 1-16. doi: 10.1063/1.5137792
  16. Patanen M., Abid A.R., Pratt S.T., Kivimäki A., Trofimov A.B., Skitnevskaya A.D., Grigoricheva E.K., Gromov E.V., Powis I., Holland D.M.P. J. Chem. Phys. 2021, 155, 1-16. doi: 10.1063/5.0058983
  17. Trofimov A.B., Holland D.M.P., Powis I., Menzies R.C., Potts A. W., Karlsson L., Gromov E.V., Badsyuk I.L., Schirmer J. J. Chem. Phys. 2017, 146, 1-21. doi: 10.1063/1.4986405
  18. Nooijen M., Bartlett R.J. J. Chem. Phys. 1995, 102, 3629-3647. doi: 10.1063/1.468592
  19. Sinha D., Mukhopadhya D., Chaudhuri R., Mukherjee D. Chem. Phys. Lett. 1989, 154, 544-549. doi: 10.1016/0009-2614(89)87149-0
  20. Stanton J.F., Gauss J. J. Chem. Phys. 1994, 101, 8938-8944. doi: 10.1063/1.468022
  21. Trofimov A.B., Schirmer J., Holland D.M.P., Karlsson L., Maripuu R., Siegbahn K., Potts A.W. J. Chem. Phys. 2001, 263, 167-193. doi: 10.1016/S0301-0104(00)00334-7
  22. Krishnan R., Binkley J.S., Seeger R., Pople J.A. J. Chem. Phys. 1980, 72, 650-654. doi: 10.1063/1.438955
  23. Clark T., Chandrasekhar J., Spitznagel G.W., Schleyer P.v.R. J. Comput. Chem. 1983, 4, 294-301. doi: 10.1002/jcc.540040303
  24. Dunning T.H. J. Chem. Phys. 1989, 90, 1007-1023. doi: 10.1063/1.456153
  25. Kendall R.A., Dunning T.H., Harrison R.J. J. Chem. Phys. 1992, 96, 6796-6806. doi: 10.1063/1.462569
  26. Shao Y., Gan Z., Epifanovsky E., Gilbert A.T.B., Wormit M., Kussmann J., Lange A.W., Behn A., Deng J., Feng X., Ghosh D., Goldey M., Horn P.R., Jacobson L.D., Kaliman I., Khaliullin R.Z., Kuś T., Landau A., Liu J., Proynov E.I., Rhee Y.M., Richard R.M., Rohrdanz M.A., Steele R.P., Sundstrom E.J., Woodcock H.L., Zimmerman P.M., Zuev D., Albrecht B., Alguire E., Austin B., Beran J.O.G., Bernard Y.A., Berquist E., Brandhorst K., Bravaya K.B., Brown S.T., Casanova D., Chang C.M., Chen Y., Chien S.H., Closser K.D., Crittenden D.L., Diedenhofen M., DiStasio R.A., Do H., Dutoi A.D., Edgar R.G., Fatehi S., Fusti-Molnar L., Ghysels A., Golubeva-Zadorozhnaya A., Gomes J., Hanson-Heine M.W.D., Harbach P.H.P., Hauser A.W., Hohenstein E.G., Holden Z.C., Jagau T.-C., Ji H., Kaduk B., Khistyaev K., Kim J., Kim J., King R.A., Klunzinger P., Kosenkov D., Kowalczyk T., Krauter C.M., Lao K.U., Laurent A.D., Lawler K.V., Levchenko S.V., Lin C.Y., Liu F., Livshits E., Lochan R.C., Luenser A., Manohar P., Manzer S.F., Mao S.-P., Mardirossian N., Marenich A.V., Maurer S.A., Mayhall N.J., Neuscamman E., Oana C.M., Olivares-Amaya R., O'Neill D.P., Parkhill J.A., Perrine T.M., Peverati R., Prociuk A., Rehn D.R., Rosta E., Russ N.J., Sharada S.M., Sharma S., Small D.W., Sodt A., Stein T., Stück D., Su Y.-C., A.Thom J.W., Tsuchimochi T., Vanovschi V., Vogt L., Vydrov O., Wang T., Watson M.A., Wenzel J., White A., Williams C.F., Yang J., Yeganeh S., Yost S.R., You Z.-Q., Zhang I.Y., Zhang X., Zhao Y., Brooks B.R., Chan G.K.L., Chipman D.M., Cramer C.J., Goddard W.A., Gordon M.S., Hehre W.J., Klamt A., Schaefer H.F., Schmidt M.W., Sherrill C.D., Truhlar D.G., Warshel A., Xu X., Aspuru-Guzik A., Baer R., Bell A.T., Besley N.A., Chai J.-D., Dreuw A., Dunietz B.D., Furlani T.R., Gwaltney S.R., Hsu C.P., Jung Y., Kong J., Lambrecht D.S., Liang W., Ochsenfeld C., Rassolov V.A., Slipchenko L.V., Subotnik J.E., Voorhis Van T., Herbert J.M., Krylov A.I., Gill P.M.W., Head-Gordon M. Mol. Phys. 2015, 113, 184-215. doi: 10.1080/00268976.2014.952696
  27. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., J.Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T.A., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J. Gaussian 16. Revision A.03. Wallingford: Gaussian, Inc. 2016
  28. Schaftenaar G., Vlieg E., Vriend G. J. Comput. Aided. Mol. Des. 2017, 31, 789-800. doi: 10.1007/s10822-017-0042-5
  29. Christiansen O., Koch H., Jørgensen P. J. Chem. Phys. 1995, 103, 7429-7441. doi: 10.1063/1.470315
  30. Koch H., Jensen H. J. A., Jørgensen P., Helgaker T. J. Chem. Phys. 1990, 93, 3345-3350. doi: 10.1063/1.458815
  31. Koch H., Jørgensen P. J. Chem. Phys. 1990, 93, 3333-3344. doi: 10.1063/1.458814
  32. Stanton J.F., Gauss J., Harding M.E., Szalay P.G., with contributions from Auer A.A., Bartlett R.J., Benedikt U., Berger C., Bernholdt D.E., Bomble Y.J., Cheng L., Christiansen O., Heckert M., Heun O., Huber C., Jagau T.-C., Jonsson D., Jusélius J., Klein K., Lauderdale W.J., Matthews D.A., Metzroth T., Mück L.A., O'Neill D.P., Price D.R., Prochnow E., Puzzarini C., Ruud K., Schiffmann F., Schwalbach W., Simmons C., Stopkowicz S., Tajti A., Vázquez J., Wang F., Watts J.D. CFOUR, Coupled cluster techniques for Computational Chemistry, a Quantumchemical Program Package.
  33. Von Niessen W., Schirmer J., Cederbaum L.S. Comput. Phys. Rep. 1984, 1, 57-125. doi: 10.1016/0167-7977(84)90002-9
  34. Zakrzewski V.G., Ortiz V. Int. J. Quantum Chem. 1994, 52, 23-27. doi: 10.1002/qua.560520806
  35. Zakrzewski V.G., Von Niessen W. J. Comput. Chem. 1993, 14, 13-18. doi: 10.1002/jcc.540140105
  36. Feller D. J. Chem. Phys. 1992, 96, 6104-6114. doi: 10.1063/1.462652
  37. Feller D. J. Chem. Phys. 1993, 98, 7059-7071. doi: 10.1063/1.464749

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies