Silicon analogues of unsaturated hydrocarbons

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The proposed communication demonstrates the efforts of researchers undertaken to prove the existence of fundamental analogies in the chemistry of structurally related compounds of carbon and silicon. Stable silicon analogues of ethylene - silenes or silaethylenes R2C=SiR2 - were obtained in 1979, disilynes R2Si=SiR2 - in 1981, and analogues of ethine or acetylene - disilins RSi≡SiR - only in 2004. Moving towards the intended goals, scientists synthesized a number of unique branched (bulky) organic and organosilicon substituents, attached them to silicon atoms, closed them from the action of oxygen and air moisture, and prevented secondary dimerization (oligomerization) reactions. The created steric protection led to the preparation of kinetically stable unsaturated silicon compounds and made it possible to characterize them by IR, NMR, UV-visible spectroscopy, and X-ray diffraction analysis.

About the authors

V. V. Semenov

G.A. Razuvaev Institute of Organometallic Chemistry RAS

Email: vvsemenov@iomc.ras.ru

N. V. Zolotareva

G.A. Razuvaev Institute of Organometallic Chemistry RAS

References

  1. West R. Comprehensive organometallic chemistry. Eds. G. Wilkinson, F.G.A. Stone, E.W. Abel. Oxford: Pergamon Press, 1982, 2, 365-398.
  2. Наметкин Н.С., Гусельников Л.Е., Вдовин В.М., Гринберг П.Л., Завьялов В.И., Оппенгейм В.Д. Докл. АН СССР. 1966, 171, 630-633.
  3. Nametkin N.S., Vdovin V.M., Guselnikov L.E., Zav'yalov V.I. Izv. Akad. Nauk SSSR. Ser. Khim. 1966, 15, 563-563. doi: 10.1007/BF00846138
  4. Nametkin N.S., Gusel'nikov L.E., Ushakova R.L., Vdovin V.M. Bull. Acad. Sci. USSR. Div. Chem. Sci. 1971, 20, 1740-1740. doi: 10.1007/BF00860053
  5. Conlin R.T., Gaspar P.P. J. Am. Chem. Soc. 1976, 98, 868-870. doi: 10.1021/ja00419a055
  6. Atwell H., Weyenberg R. Intra-Science Chem. Rep. 1973, 7, 139-145.
  7. Gusel'nikov L.E., Nametkin N.S., Vdovin V.M. Acc. Chem. Res. 1975, 8, 18-25. doi: 10.1021/ar50085a003
  8. Gusel'nikov L.E., Nametkin N.S. Chem. Rev. 1979, 79, 529-577. doi: 10.1021/cr60322a004
  9. Coleman B., Jones M. Rev. Chem. Intermed. 1981, 4, 297-367.
  10. Raab G., Michl J. Chem. Rev. 1985, 85, 419-509. doi: 10.1021/cr00069a005
  11. Bertrand G., Tringuer G., Mazerolles P. J. Organometal. Chem. Libr. 1981, 12, 1-52.
  12. Brook A.G., Harris J.W., Lennon J., Sheikh M. J. Am. Chem. Soc. 1979, 101, 83-95. doi: 10.1021/ja00495a015
  13. West R., Fink M.J., Michl J. Science. 1981, 214, 1343-1344. doi: 10.1126/science.214.4527.1343
  14. West R. Science. 1984, 225, 1109-1114. doi: 10.1126/science.225.4667.1109
  15. Fink M.J., De Young D.J., West R., Michl J. J. Am. Chem. Soc. 1983, 105, 1070-1071. doi: 10.1021/ja00342a079
  16. Fink M.J., Haller K.J., West R., Michl J. J. Am. Chem. Soc. 1984, 106, 822-823. doi: 10.1021/ja00315a077
  17. Michalczyk M.J., Fink M.J., Haller K.J., West R., Michl J. Organometallics. 1986, 5, 531-538. doi: 10.1021/om00134a023
  18. West R. Angew. Chem. 1987, 99, 1231-1341. doi: 10.1002/ange.19870991204
  19. Kudo T., Nagase S. J. Am. Chem. Soc. 1985, 107, 2589-2595. doi: 10.1021/ja00295a003
  20. Michalczyk M.J., West R., Michl J. Chem. Commun. 1984, 1525-1526. doi: 10.1039/C39840001525
  21. Gau D., Nougue R., Saffon-Merceron N., Baceiredo A., Cozar A.D., Cossio F.P., Hashizume D., Kato T. Angew. Chem. Int. Ed. 2016, 55, 14673-14677. doi: 10.1002/anie.201608416
  22. Schklower W.E., Struchkov Y.T., Guselnikov L.E., Wolkowa W.W., Awakyan W.G. Z. Anorg. Allgem. Chem. 1983, 501, 153-156. doi: 10.1002/zaac.19835010618
  23. Weidenbruch M., Willms S., Saak W., Henkel G. Angew. Chem. Int. Ed. 1997, 36, 2503-2504. doi: 10.1002/anie199725031
  24. Bejan J., Scheschkewitz D. Angew. Chem. Int. Ed. 2007, 46, 5783-5786. doi: 10.1002/anie200701744
  25. Hague D.N., Prince R.H. Proc. Chem. Soc. 1962, 300. [J. Chem. Soc. 1962, 3862.]
  26. Pitt C.G. Homoatomic rings, Chains and Macromolecules of Main-group Elements. Ed. A.L. Rheingold. Amsterdam: Elsevier, 1977, 203-234.
  27. Wiberg N., Finger C.M.M., Polborn K. Angew. Chem. Int. Ed. 1993, 32, 1054-1057. doi: 10.1002/anie.199310541
  28. Wiberg N., Niedermayer W., Fischer G., Nöth H., Suter M. Eur. J. Inorg. Chem. 2002, 2, 1066. doi: 10.1002/1099-0682(200205)2002:5<1066::AID-EJIC1066>3.0.CO;2-6
  29. Wiberg N., Vasisht S. K., Fischer G., Mayer P. Z. Anorg. Allgem. Chem. 2004, 630, 1823-1828. doi: 10.1002/zaac.200400177
  30. Sekiguchi A., Kinjo R., Ichinohe M. Science. 2004, 305, 1755-1757. doi: 10.1126/science.1102209
  31. Matsuo T., Tamao K. Bull. Chem. Soc. Jpn. 2015, 88, 1201-1220. doi: 10.1246/bcsj.20150130
  32. Präsang C., Scheschkewitz D. Chem. Soc. Rev. 2016, 45, 900-921. doi: 10.1039/c5cs00720h
  33. Семенов В.В. Усп. хим. 2011, 80, 335-361.
  34. Semenov V.V. Russ. Chem. Rev. 2011, 80, 313-340. doi: 10.1070/RC2011v080n04ABEH004110

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies