Bastroviruses (Astroviridae): genetic diversity and potential impact on human and animal health

封面

如何引用文章

详细

Introduction. Bastroviruses were discovered in the Netherlands in 2016 in human stool samples and show partial genetic similarities to astroviruses and hepatitis E viruses. Their association with disease onset has not yet been established.

Materials and methods. Metagenomic sequencing of fecal samples of Nyctalus noctula bats collected in the Russian Federation in 2023 was performed. Two almost complete genomes of bastroviruses were assembled. The zoonotic potential of these viruses was assessed using machine learning methods, their recombination was studied, and phylogenetic trees were constructed.

Results. A nearly complete bastrovirus genome was de novo assembled in one of the samples, and it was used to assemble another genome in another sample. The zoonotic potential of the virus from one of these samples was estimated as high. The existence of recombination between structural and non-structural polyproteins was demonstrated.

Conclusion. Two bastrovirus genomes were assembled, phylogenetic and recombination analyses were performed, and the zoonotic potential was evaluated.

作者简介

German Roev

Central Research Institute for Epidemiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing; Moscow Institute of Physics and Technology (National Research University)

Email: roevherman@gmail.com
ORCID iD: 0000-0002-2353-5222

Bioinformatician of Laboratory for Genomics Research of the Central Research Institute for Epidemiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow, Russia

俄罗斯联邦, 111123, Moscow; 115184, Dolgoprudny

Nadezhda Borisova

Central Research Institute for Epidemiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Email: borisova@cmd.su
ORCID iD: 0000-0002-9672-0648

Junior researcher of Laboratory for Genomics Research of the Central Research Institute for Epidemiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow, Russia

俄罗斯联邦, 111123, Moscow

Nadezhda Chistyakova

A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences

Email: lanche@mail.ru
ORCID iD: 0009-0002-6034-1408

Engineer of Laboratory of comparative etology and biocommunication of A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Russia, Moscow, Russia

俄罗斯联邦, 119071, Moscow

Anastasia Vyhodtseva

Central Research Institute for Epidemiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Email: vihodceva@cmd.su
ORCID iD: 0009-0005-1911-9620

Technologist of Laboratory for Genomics Research of the Central Research Institute for Epidemiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow, Russia

俄罗斯联邦, 111123, Moscow

Vasiliy Akimkin

Central Research Institute for Epidemiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Email: vgakimkin@yandex.ru
ORCID iD: 0000-0003-4228-9044

Doctor of Medicine, Professor, Director of Central Research Institute for Epidemiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow, Russia

俄罗斯联邦, 111123, Moscow

Kamil Khafizov

Central Research Institute for Epidemiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

编辑信件的主要联系方式.
Email: khafizov@cmd.su
ORCID iD: 0000-0001-5524-0296

PhD (Biol.), Head of Laboratory for Genomics Research of the Central Research Institute for Epidemiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow, Russia

俄罗斯联邦, 111123, Moscow

参考

  1. Oude Munnink B.B., Cotten M., Canuti M., Deijs M., Jebbink M.F., van Hemert F.J., et al. A Novel astrovirus-like RNA virus detected in human stool. Virus Evol. 2016; 2(1): vew005. https://doi.org/10.1093/ve/vew005
  2. Dos Anjos K., Nagata T., Melo F.L. Complete genome sequence of a novel bastrovirus isolated from raw sewage. Genome Announc. 2017; 5(40): e01010–17. https://doi.org/10.1128/genomeA.01010-17
  3. Yinda C.K., Ghogomu S.M., Conceição-Neto N., Beller L., Deboutte W., Vanhulle E., et al. Cameroonian fruit bats harbor divergent viruses, including rotavirus H, bastroviruses, and picobirnaviruses using an alternative genetic code. Virus Evol. 2018; 4(1): vey008. https://doi.org/10.1093/ve/vey008
  4. Bauermann F.V., Hause B., Buysse A.R., Joshi L.R., Diel D.G. Identification and genetic characterization of a porcine hepe-astrovirus (bastrovirus) in the United States. Arch. Virol. 2019; 164(9): 2321–6. https://doi.org/10.1007/s00705-019-04313-x
  5. Mishra N., Fagbo S.F., Alagaili A.N., Nitido A., Williams S.H., Ng J., et al. A viral metagenomic survey identifies known and novel mammalian viruses in bats from Saudi Arabia. PLoS One. 2019; 14(4): e0214227. https://doi.org/10.1371/journal.pone.0214227
  6. Nagai M., Okabayashi T., Akagami M., Matsuu A., Fujimoto Y., Hashem M.A., et al. Metagenomic identification, sequencing, and genome analysis of porcine hepe-astroviruses (bastroviruses) in porcine feces in Japan. Infect. Genet. Evol. 2021; 88: 104664. https://doi.org/10.1016/j.meegid.2020.104664
  7. Chen Z., Zhao H., Li Z., Huang M., Si N., Zhao H., et al. First discovery of phenuiviruses within diverse RNA viromes of Asiatic toad (Bufo gargarizans) by metagenomics sequencing. Viruses. 2023; 15(3): 750. https://doi.org/10.3390/v15030750
  8. Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30(15): 2114–20. https://doi.org/10.1093/bioinformatics/btu170
  9. Bushnell B., Rood J., Singer E. BBMerge – accurate paired shotgun read merging via overlap. PLoS One. 2017; 12(10): e0185056. https://doi.org/10.1371/journal.pone.0185056
  10. Menzel P., Ng K.L., Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 2016; 7: 11257. https://doi.org/10.1038/ncomms11257
  11. Li D., Liu C.M., Luo R., Sadakane K., Lam T.W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015; 31(10): 1674–6. https://doi.org/10.1093/bioinformatics/btv033
  12. Buchfink B., Reuter K., Drost H.G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods. 2021; 18(4): 366–8. https://doi.org/10.1038/s41592-021-01101-x
  13. Langmead B., Wilks C., Antonescu V., Charles R. Scaling read aligners to hundreds of threads on general-purpose processors. Bioinformatics. 2019; 35(3): 421–32. https://doi.org/10.1093/bioinformatics/bty648
  14. Danecek P., Bonfield J.K., Liddle J., Marshall J., Ohan V., Pollard M.O., et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021; 10(2): giab008. https://doi.org/10.1093/gigascience/giab008
  15. Wheeler D.L., Church D.M., Federhen S., Lash A.E., Madden T.L., Pontius J.U., et al. Database resources of the National Center for Biotechnology. Nucleic. Acids Res. 2003; 31(1): 28–33. https://doi.org/10.1093/nar/gkg033
  16. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990; 215(3): 403–10. https://doi.org/10.1016/S0022-2836(05)80360-2
  17. Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013; 30(4): 772–80. https://doi.org/10.1093/molbev/mst010
  18. Nguyen L.T., Schmidt H.A., von Haeseler A., Minh B.Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015; 32(1): 268–74. https://doi.org/10.1093/molbev/msu300
  19. Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermiin L.S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017; 14(6): 587–9. https://doi.org/10.1038/nmeth.4285
  20. Letunic I., Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic. Acids Res. 2021; 49(W1): W293–6. https://doi.org/10.1093/nar/gkab301
  21. Suyama M., Torrents D., Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 2006; 34(Web Server issue): W609–12. https://doi.org/10.1093/nar/gkl315
  22. Martin D.P., Murrell B., Golden M., Khoosal A., Muhire B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015; 1(1): vev003. https://doi.org/10.1093/ve/vev003
  23. Mollentze N., Babayan S.A., Streicker D.G. Identifying and prioritizing potential human-infecting viruses from their genome sequences. PLoS Biol. 2021; 19(9): e3001390. https://doi.org/10.1371/journal.pbio.3001390
  24. Wolfaardt M., Kiulia N.M., Mwenda J.M., Taylor M.B. Evidence of a recombinant wild-type human astrovirus strain from a Kenyan child with gastroenteritis. J. Clin. Microbiol. 2011; 49(2): 728–31. https://doi.org/10.1128/JCM.01093-10
  25. Wohlgemuth N., Honce R., Schultz-Cherry S. Astrovirus evolution and emergence. Infect. Genet. Evol. 2019; 69: 30–7. https://doi.org/10.1016/j.meegid.2019.01.009
  26. Worobey M., Holmes E.C. Evolutionary aspects of recombination in RNA viruses. J. Gen. Virol. 1999; 80(Pt. 10): 2535–43. https://doi.org/10.1099/0022-1317-80-10-2535
  27. van Dijk E.L., Auger H., Jaszczyszyn Y., Thermes C. Ten years of next-generation sequencing technology. Trends Genet. 2014; 30(9): 418–26. https://doi.org/10.1016/j.tig.2014.07.001
  28. Kiselev D., Matsvay A., Abramov I., Dedkov V., Shipulin G., Khafizov K. Current trends in diagnostics of viral infections of unknown etiology. Viruses. 2020; 12(2): 211. https://doi.org/10.3390/v12020211
  29. Radford A.D., Chapman D., Dixon L., Chantrey J., Darby A.C., Hall N. Application of next-generation sequencing technologies in virology. J. Gen. Virol. 2012; 93(Pt. 9): 1853–68. https://doi.org/10.1099/vir.0.043182-0
  30. Bassi C., Guerriero P., Pierantoni M., Callegari E., Sabbioni S. Novel virus identification through metagenomics: a systematic review. Life (Basel). 2022; 12(12): 2048. https://doi.org/10.3390/life12122048
  31. Li W., Shi Z., Yu M., Ren W., Smith C., Epstein J.H., et al. Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005; 310(5748): 676–9. https://doi.org/10.1126/science.1118391

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Phylogenetic tree of the non-structural polyprotein (NSP) of bastroviruses.

下载 (305KB)
3. Fig. 2. Phylogenetic tree of the structural polyprotein (SP) of bastroviruses.

下载 (305KB)
4. Fig. 3. Phylogenetic compatibility matrix constructed from the merged alignments of NSP and SP proteins.

下载 (485KB)

版权所有 © Roev G.V., Borisova N.I., Chistyakova N.V., Vyhodtseva A.V., Akimkin V.G., Khafizov K.F., 2023

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可
##common.cookie##