Dwarf bat’s (Pipistrellus pipistrellus) lung diploid cell strains and their permissivity to orbiviruses (Reoviridae: Orbivirus) – pathogens of vector-borne animal diseases

封面

如何引用文章

全文:

详细

Introduction. Bat cell cultures are a popular model both for the isolation of vector-borne disease viruses and for assessing the possible role of these mammalian species in forming the natural reservoirs of arbovirus infection vectors.

The goal of the research was to obtain and characterize strains of diploid lung cells of the bat (Pipistrellus pipistrellus) and evaluate their permissivity to bluetongue, African horse sickness (AHS), and epizootic hemorrhagic disease of deer (EHD) viruses.

Materials and methods. Cell cultures of the dwarf bat’s lung were obtained by standard enzymatic disaggregation of donor tissue and selection of cells for adhesive properties. The permissivity of cell cultures was determined to bluetongue, AHL, and EHD orbiviruses.

Results. Diploid cell strains (epithelium-like and fibroblast-like types) retaining cytomorphological characteristics and karyotype stability were obtained from tissue of the bat’s lung. Their permissivity to viruses of the genus Orbivirus of the Reoviridae family, pathogens of transmissible animal diseases, has been established.

Discussion. The permissivity of the obtained strains of bat’s lung cells to bluetongue, AHL, and EHD viruses is consistent with the isolation of orbiviruses in bats of the species Pteropus poliocephalus, Pteropus hypomelanus, Rousettus aegyptiacus leachii, Syconycteris crassa, Myotis macrodactylus, and Eidolon helvum.

Conclusion. Strains of diploid lung cells of the dwarf bat are permissive to orbiviruses of bluetongue, AHS, and EHD, which allows us to recommend them for the isolation of these viruses, and the species Pipistrellus pipistrellus to be considered as a potential natural reservoir and carrier of pathogens of these vector-borne diseases.

作者简介

Olga Povolyaeva

Federal Research Center for Virology and Microbiology

Email: 2741188@mail.ru
ORCID iD: 0000-0002-5635-6677

microbiologist

俄罗斯联邦, 601125, Vladimir region, Volginsky

Anna Chadaeva

Federal Research Center for Virology and Microbiology

Email: a_doct_or@mail.ru
ORCID iD: 0000-0002-9615-9758

microbiologist

俄罗斯联邦, 601125, Vladimir region, Volginsky

Andrey Lunitsin

Federal Research Center for Virology and Microbiology

Email: lunicyn@mail.ru
ORCID iD: 0000-0002-5043-446X

Senior Researcher

俄罗斯联邦, 601125, Vladimir region, Volginsky

Sergey Yurkov

Federal Research Center for Virology and Microbiology

编辑信件的主要联系方式.
Email: patronn13@rambler.ru
ORCID iD: 0000-0002-6801-9424

Dr. Sci. Biol., Professor, Chief Researcher

俄罗斯联邦, 601125, Vladimir region, Volginsky

参考

  1. Narladkar B.W. Projected economic losses due to vector and vector-borne parasitic diseases in livestock of India and its significance in implementing the concept of integrated practices for vector management. Vet. World. 2018; 11(2): 151–60. https://doi.org/10.14202/vetworld.2018.151-160
  2. WHO. Vector-borne diseases: Fact Sheet; 2020. Available at: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases
  3. Eremyan A.A., L’vov D.K., Shchetinin A.M., Deryabin P.G., Aristova V.A., Gitel’man A.K., et al. Genetic diversity of viruses of Chenuda virus species (orbivirus, reoviridae) circulating in Central Asia. Voprosy virusologii. 2017; 62(2): 81–6. https://doi.org/10.18821/0507-4088-2017-62-2-81-86 (in Russian)
  4. Maclachlan N.J., Guthrie A.J. Re-emergence of bluetongue, African horse sickness, and other orbivirus diseases. Vet. Res. 2010; 41(6): 35. https://doi.org/10.1051/vetres/2010007
  5. L’vov D.K., Alekseev K.P., Alimbarova L.M., Aliper T.I., Al’khovskiy S.V., Andronova V.L., et al. Viruses and Viral Infections of Humans and Animals: A Guide to Virology [Virusy i virusnye infektsii cheloveka i zhivotnykh. Rukovodstvo po virusologii]. Moscow: MIA; 2013. (in Russian)
  6. Attoui H., Mohd Jaafar F. Zoonotic and emerging orbivirus infections. Rev. Sci. Tech. 2015; 34(2): 353–61. https://doi.org/10.20506/rst.34.2.2362
  7. Calisher C.H., Childs J.E., Field H.E., Holmes K.V., Schountz T. Bats: Important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 2006; 19(3): 531–45. https://doi.org/10.1128/CMR.00017-06
  8. Leroy E.M., Kumulungui B., Pourrut X., Rouquet P., Hassanin A., Yaba P., et al. Fruit bats as reservoirs of Ebola virus. Nature. 2005; 438(7068): 575–6. https://doi.org/10.1038/438575a
  9. Lau S.K., Woo P.C., Li K.S., Huang Y., Tsoi H.W., Wong B.H., et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl Acad. Sci. USA. 2005; 102(39): 14040–5. https://doi.org/10.1073/pnas.0506735102
  10. Ge X.Y., Li J.L., Yang X.L., Chmura A.A., Zhu G., Epstein J.H., et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 2013; 7477(503): 535–8. https://doi.org/10.1038/nature12711
  11. Aréchiga Ceballos N., Vázquez Morón S., Berciano J.M., Nicolás O., Aznar López C., Juste J., et al. Novel lyssavirus in bat, Spain. Emerg. Infect. Dis. 2013; 19(5): 793–5. https://doi.org/10.3201/eid1905
  12. Jánoska M., Vidovszky M., Molnár V., Liptovszky M., Harrach B., Benko M. Novel adenoviruses and herpesviruses detected in bats. Vet. J. 2011; 189(1): 118–21. https://doi.org/10.1016/j.tvjl.2010.06.020
  13. Aurine N., Baquerre C., Gaudino M., Jean C., Dumont C., Rival-Gervier S., et al. Reprogrammed Pteropus bat stem cells as a model to study host-pathogen interaction during Henipavirus infection. Microorganisms. 2021; 9(12): 2567. https://doi.org/10.3390/microorganisms9122567
  14. Waruhiu C., Ommeh S., Obanda V., Agwanda B., Gakuya F., Ge X.Y., et al. Molecular detection of viruses in Kenyan bats and discovery of novel astroviruses, caliciviruses and rotaviruses. Virol. Sin. 2017; 32(2): 101–14. https://doi.org/10.1007/s12250-016-3930-2
  15. Kohl C., Lesnik R., Brinkmann A., Ebinger A., Radonić A., Nitsche A., et al. Isolation and characterization of three mammalian orthoreoviruses from European bats. PLoS One. 2012; 7(8): e43106. https://doi.org/10.1371/journal.pone.0043106
  16. Chua K.B., Crameri G., Hyatt A., Yu M., Tompang M.R., Rosli J., et al. A previously unknown reovirus of bat origin is associated with an acute respiratory disease in humans. Proc. Natl Acad. Sci. USA. 2007; 104(27): 11424–9. https://doi.org/10.1073/pnas.0701372104
  17. Makarov V.V., Lozovoy D.A. New Particularly Dangerous Infections Associated with Bats [Novye osobo opasnye infektsii, assotsiirovannye s rukokrylymi]. Vladimir; 2016. (in Russian)
  18. Gonsalves L., Bicknell B., Law B., Webb C., Monamy V. Mosquito consumption by insectivorous bats: does size matter? PLoS One. 2013; 8(10): e77183. https://doi.org/10.1371/journal.pone.0077183
  19. La Motte L.C. Jr. Japanese B encephalitis in bats during simulated hibernation. Am. J. Hyg. 1958; 67(1): 101–8. https://doi.org/10.1093/oxfordjournals.aje.a119912
  20. Melaun C., Werblow A., Busch M.W., Liston A., Klimpel S. Bats as potential reservoir hosts for vector-borne diseases. In: Klimpel S., Mehlhorn H. Bats (Chiroptera) as Vectors of Diseases and Parasites. Parasitology Research Monographs, Volume 5. Berlin, Heidelberg: Springer; 2014. https://doi.org/10.1007/978-3-642-39333-4_3
  21. Schuh A.J., Amman B.R., Jones M.E., Sealy T.K., Uebelhoer L.S., Spengler J.R., et al. Modelling filovirus maintenance in nature by experimental transmission of Marburg virus between Egyptian rousette bats. Nat. Commun. 2017; 8: 14446. https://doi.org/10.1038/ncomms14446
  22. Smith I., Wang L.F. Bats and their virome: an important source of emerging viruses capable of infecting humans. Curr. Opin. Virol. 2013; 3(1): 84–91. https://doi.org/10.1016/j.coviro.2012.11.006
  23. Gloza-Rausch F., Ipsen A., Seebens A., Göttsche M., Panning M., Drexler J.F., et al. Detection and prevalence patterns of group I coronaviruses in bats, northern Germany. Emerg. Infect. Dis. 2008; 14(4): 626–31. https://doi.org/10.3201/eid1404.071439
  24. Geldenhuys M., Coertse J., Mortlock M., Markotter W. In Vitro Isolation of Bat Viruses Using Commercial and Bat-Derived Cell Lines. Caister Academic Press; 2020: 149–80. https://doi.org/10.21775/9781912530144.10
  25. Banerjee A., Misra V., Schountz T., Baker M.L. Tools to study pathogen-host interactions in bats. Virus Res. 2018; 248: 5–12. https://doi.org/10.1016/j.virusres.2018.02.013
  26. Crameri G., Todd S., Grimley S., McEachern J.A., Marsh G.A., Smith C., et al. Establishment, immortalisation and characterisation of pteropid bat cell lines. PLoS One. 2009; 4(12): e8266. https://doi.org/10.1371/journal.pone.0008266
  27. Hoffmann M., Müller M.A., Drexler J.F., Glende J., Erdt M., Gützkow T., et al. Differential sensitivity of bat cells to infection by enveloped RNA viruses: coronaviruses, paramyxoviruses, filoviruses, and influenza viruses. PLoS One. 2013; 8(8): e72942. https://doi.org/10.1371/journal.pone.0072942
  28. Povolyaeva O.S., Yurkov S.G., Lapteva O.G., Kolbasova O.L., Chadaeva A.A., Kol’tsov A.Yu., et al. Biological characteristics and permissiveness to viruses of diploid kidney cells strain from the bat Nathusius’ pipistrelle (Pipistrellus Nathusii Keyserling & Blasius, 1839; (Chiroptera: Microchiroptera: Vespertilionidae). Voprosy virusologii. 2021; 66(1): 29–39. https://doi.org/10.36233/0507-4088-12 (in Russian)
  29. OIE; World Animal Health Information System. Disease situation. Available at: https://wahis.oie.int/#/dashboards/country-or-disease-dashboard
  30. Yurkov S.G., Zuev V.V., Sidorov S.I., Kushnir S.D., Smyslova N.Yu., Neverovskaya N.S., et al. Catalog of the All-Russian Research Institute of Veterinary Virology and Microbiology Cell Culture Collection [Katalog kollektsii kletochnykh kul’tur VNIIVViM]. Pokrov; 2010. (in Russian)
  31. Ford C.E., Hamerton J.L. A colchicine, hypotonic citrate, squash sequence for mammalian chromosomes. Stain Technol. 1956; 31(6): 247–51. https://doi.org/10.3109/10520295609113814
  32. Rothfels K.H., Siminovitch L. Air drying technique for flattening chromosomes in mammalian cells grown in vitro. Stain Technol. 1958; 33(2): 73–7. https://doi.org/10.3109/10520295809111827
  33. Baker K.S., Todd S., Marsh G., Fernandez-Loras A., Suu-Ire R., Wood J.L.N., et al. Co-circulation of diverse paramyxoviruses in an urban African fruit bat population. J. Gen. Virol. 2012; 93(Pt. 4): 850–6. https://doi.org/10.1099/vir.0.039339-0
  34. Directive 2010/63/EU of the European parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32010L0063
  35. Fagre A.C., Lee J.S., Kityo R.M., Bergren N.A., Mossel E.C., Nakayiki T., et al. Discovery and characterization of Bukakata orbivirus (Reoviridae:Orbivirus), a novel virus from a Ugandan bat. Viruses. 2019; 11(3): 209. https://doi.org/10.3390/v11030209

补充文件

附件文件
动作
1. JATS XML

版权所有 © Problems of Virology, 2022

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可
##common.cookie##