Antiviral activity of extracts of basidiomycetes and humic compounds substances against Human Immunodeficiency Virus (Retroviridae: Orthoretrovirinae: Lentivirus: Human immunodeficiency virus 1) and Herpes Simplex Virus (Herpesviridae: Simplexvirus: Human alphaherpesvirus 1)

封面图片

如何引用文章

全文:

详细

Introduction. One of the most urgent problem of modern medicine is the fight against the disease caused by the Human Immunodeficiency Virus (HIV) – HIV infection. The chemical compounds have improved the situation for infected people, but they are toxic, disrupt the metabolism and cannot eliminate the integrated virus from the body. The emergence of resistant HIV strains makes these treatments ineffective. Often, the death of HIV-infected people occurs as a result of the development of opportunistic infections caused by viruses of the Herpesviridae family. Therefore, the search for new therapeutic and preventive drugs that are less toxic and active against several viruses at the same time is relevant. Basidiomycetes, higher fungi, are a source of medicinal compounds that have antimicrobial properties, as well as antiviral ones. Humic compounds (HS) of various nature also have antiviral activity.

The aim of the study was to obtain nontoxic compounds from the basidiomycete Inonotus obliquus and humic compounds from brown coals and to test their activity against viruses that are pathogenic to humans: HIV and Herpes Simplex Virus (HSV).

Material and methods. The antiviral activity of melanin extracts obtained from the culture of the chaga fungus Inonotus obliquus and HS from the brown coal of the Kansko-Achinsk Deposit was studied using a model of MT-4 lymphoblastoid cells infected with HIV type 1 (HIV–1) strains and a monolayer culture of Vero cells infected with HSV type 1 (HSV-1) using virological and statistical research methods.

Results and discussion. It was found that all the studied compounds did not have a cytotoxic effect on cells at a concentration of 100 mcg/ml. It was shown that extracts of basidiomycetes and HS have antiviral activity against HIV-1 and HSV-1. EC 50 (50%-effective concentration) for HIV-1 was 3.7–5.0 mcg/ml, selectivity index 28–35. Antiherpetic activity was detected at a dose of 50–100 mcg/ml. The antiviral effectiveness of melanin compounds was established both in the «preventive» (2 hours before cell infection) and in the «therapeutic» regimen of drug administration, both for HIV-1 and HSV-1. The presence of antiviral activity of melanin and HS in relation to the RNA-containing HIV-1 virus and DNA-containing HSV-1 virus in our study coincides with the results of a number of authors in relation to influenza viruses, herpes virus, HIV, hepatitis B virus, Coxsackievirus, smallpox vaccine virus, which suggests that the type of nucleic acid in the virus does not play a fundamental role in the antiviral action of these drugs. It is also clear that HS is effective against both enveloped and non-enveloped viruses.

Conclusion. In general, it can be concluded that melanin and humic compounds are characterized by low toxicity in the presence of both virucidal and antiviral activity. This allows us to consider the studied compounds as the basis for creating safe medicines that are effective against pathogens of various viral infections.

作者简介

D. Nosik

The D.I. Ivanovsky Institute of Virology FSBI «National Research Center of Epidemiology and Microbiology named after honorary academician N.F. Gamaleya» of the Ministry of Health of Russia

Email: dnnosik@yandex.ru
ORCID iD: 0000-0001-5757-5671
123098, Moscow 俄罗斯联邦

N. Nosik

The D.I. Ivanovsky Institute of Virology FSBI «National Research Center of Epidemiology and Microbiology named after honorary academician N.F. Gamaleya» of the Ministry of Health of Russia

Email: nosiknn@yandex.ru
ORCID iD: 0000-0003-1943-6536
123098, Moscow 俄罗斯联邦

T. Teplyakova

FBU State Research Center of Virology and Biotechnology «Vector» of Rospotrebnadzor

Email: vector@vector.nsc.ru
ORCID iD: 0000-0003-4754-5051
630559, Koltsovo district, Novosibirsk region 俄罗斯联邦

O. Lobach

The D.I. Ivanovsky Institute of Virology FSBI «National Research Center of Epidemiology and Microbiology named after honorary academician N.F. Gamaleya» of the Ministry of Health of Russia

编辑信件的主要联系方式.
Email: victoriola@yandex.ru
ORCID iD: 0000-0001-9351-6433

Cand. Sci. Biol., senior researcher at the Laboratory of antiviral and disinfection agents

123098, Moscow

俄罗斯联邦

I. Kiseleva

The D.I. Ivanovsky Institute of Virology FSBI «National Research Center of Epidemiology and Microbiology named after honorary academician N.F. Gamaleya» of the Ministry of Health of Russia

Email: iakiseleva@yandex.ru
ORCID iD: 0000-0003-3693-6081
123098, Moscow 俄罗斯联邦

N. Kondrashina

The D.I. Ivanovsky Institute of Virology FSBI «National Research Center of Epidemiology and Microbiology named after honorary academician N.F. Gamaleya» of the Ministry of Health of Russia

Email: nina.kond1950@yandex.ru
ORCID iD: 0000-0003-3985-3839
123098, Moscow 俄罗斯联邦

M. Bochkova

The D.I. Ivanovsky Institute of Virology FSBI «National Research Center of Epidemiology and Microbiology named after honorary academician N.F. Gamaleya» of the Ministry of Health of Russia

Email: bochkovams1@yandex.ru
ORCID iD: 0000-0001-9295-8379
123098, Moscow 俄罗斯联邦

G. Ananko

FBU State Research Center of Virology and Biotechnology «Vector» of Rospotrebnadzor

Email: vector@vector.nsc.ru
ORCID iD: 0000-0001-6570-5501
630559, Koltsovo district, Novosibirsk region 俄罗斯联邦

参考

  1. Руководство по применению антиретровирусных препаратов у взрослых и подростков, инфицированных ВИЧ-1. М.: Р.Валент; 2011. 2. Носик Д.Н., Носик Н.Н. ВИЧ-инфекция: профессиональный риск и экстренная профилактика. М.; 2004.
  2. Смирнов Ю.А., Носик Н.Н., Носик Д.Н. Подходы к фитотерапии ВИЧ-инфекции. Традиционная медицина. 2017; 4(51): 26–34.
  3. Теплякова Т.В. Высшие грибы Западной Сибири – перспективные объекты для биотехнологии лекарственных препаратов. Новосибирск; 2014.
  4. Lopusiewicz L. Isolation, characterisation and biological activity of melanin from Exidia nigricans. World Sci. News. 2018; 91: 111–29.
  5. Попов А.И., Зеленков В.Н., Теплякова Т.В. Биологическая активность и биохимия гуминовых веществ. Часть 1. Биохимический аспект (обзор литературы). Вестник Российской Академии естественных наук. 2016; 16(1): 11–8.
  6. Ананько Г.Г., Казачинская Е.И., Косогова Т.А., Теплякова Т.В. Механизмы антигерпетической активности меланина чаги (Inonotus obliquus). В кн.: Дьяков Ю.Т., Сергеев Ю.В., ред. Современная микология в России. Материалы четвертого съезда микологов России. Том 7. М.; 2017: 395–7.
  7. Pan H.H., Yu X.T., Li T., Wu H.L., Jiao C.W., Cai M.H., et al. Aqueous extract from a Chaga medicinal mushroom, Inonotus obliquus (higher Basidiomycetes), prevents Herpes Simplex Virus entry through inhibition of viral-induced membrane fusion. Int. J. Med. Mushrooms. 2013; 15(1): 29–38. https://doi.org/10.1615/intjmedmushr.v15.i1.40
  8. Попов А.И., Зеленков В.Н., Теплякова Т.В. Биологическая активность и биохимия гуминовых веществ. Часть 2. Медико-биологический аспект. Обзор литературы. Вестник Российской Академии естественных наук. 2016; 16(5): 9–15.
  9. Jacob K.K., Prashob P.K.J., Chandramohanakumar N. Humic substances as a potent biomaterials for therapeutic and drug delivery system – a review. Int. J. App. Pharm. 2019; 11(3): 1–4. https://doi.org/10.22159/ijap.2019v11i3.31421
  10. Kornilaeva G.V., Siniavin A.E., Schultz A., Germann A., Moog C., Von Briesen H., et al. The differential Anti-HIV effect of a new humic substance-derived preparation in diverse cells of the immune system. Acta Naturae. 2019; 11(2): 68–76. https://doi.org/10.32607/20758251-2019-11-2-68-76
  11. Теплякова Т.В., Ананько Г.Г., Ильичева Т.Н., Казачинская Е.И., Носик Н.Н., Носик Д.Н. и др. Противовирусное средство на основе гуминовых кислот. Патент РФ №2678986; 2019.
  12. Рытик П.Г., Горовой Л.Ф., Кучеров И.И., Сенюк О.Ф. Антиретровирусная активность некоторых видов базидиальных грибов. СПИД, рак и общественное здоровье. 2007; 11(1): 59–61.
  13. Brandt C.R., Pirano F. Mushroom antiviral. Recent Res. Dev. Antimicrob. Agent Chemother. 2000; 4(1): 11–26.
  14. Теплякова Т.В., Булычев Л.Е., Косогова Т.А., Ибрагимова Ж.Б., Юрганова И.А., Кабанов А.С. и др. Противовирусная активность экстрактов из базидиальных грибов в отношении ортопоксвирусов. Проблемы особо опасных инфекций. 2012; (3): 99–101.
  15. Gao Y., Zhou Sh., Huang M., Xu A. Antibacterial and antiviral value of the genus Ganoderma P.Karst. Species (Aphyllophoromycetideae): a review. Int. J. Med. Mushroom. 2003; 5(3): 235–46. https://doi.org/10.1615/InterJMedicMush.v5.i3.20
  16. Теплякова Т.В., Гашникова Н.М., Балахнин С.М., Косогова Т.А. Антиретровирусная активность экстрактов из чаги, меланина и гуминовых соединений. В кн.: Современная микология в России. Материалы 3- го съезда микологов России. Том 3. М.; 2012: 419–20.
  17. Разумов И.А., Казачинская Е.А., Пучкова Л.И., Косогова Т.А., Горбунова И.А., Локтев В.Б. и др. Протективная активность водных экстрактов из высших грибов при экспериментальной герпесвирусной инфекции у белых мышей. Антибиотики и химиотерапия. 2013; 58(9-10): 8–12.
  18. Полковникова М.В., Носик Н.Н., Гараев Т.М., Кондрашина Н.Г., Финогенова М.П., Шибнев В.А. Изучение противогерпетических свойств экстрактов из березового гриба Inonotus obliquus. Вопросы вирусологии. 2014; 59(2): 45–8.
  19. Шибнев В.А., Гараев Т.М., Финогенова М.П., Калнина Л.Б., Носик Д.Н. Противовирусное действие водных экстрактов березового гриба Inonotus obliquus на вирус иммунодефицита человека. Вопросы вирусологии. 2015; 60(2): 35–8.
  20. Разумов И.А., Косогова Т.А., Казачинская Е.А., Пучкова Л., Щербакова Н.С., Горбунова И.А. и др. Противовирусная активность водных экстрактов и полисахаридных фракций, полученных из мицелия и плодовых тел высших грибов. Антибиотики и химиотерапия. 2010; 55(9-10): 14–8.
  21. Ilycheva T.N., Balakhnin S.M., Gashnikova N.M., Durymanov A.G., Anan’ko G.G., Kosogova T.A., et al. Antiviral Activity of Humic Substances. In: Third International Conference of CIS IHSS on Humic Innovative Technologies Tenth International Conference daRostim «Humic Substances and Other Biologically Active Compounds in Agriculture» HIT-daRostim-2014. Moscow; 2014.
  22. Schneider J., Weis R., Maenner C., Kary B., Werner A., Stubert B.J., et al. Inhibition of HIV-1 in cell culture by synthetic humate analogues derived from hydroquinone: mechanism of inhibition. Virology. 1996; 218(2): 389–95. https://doi.org/10.1006/viro.1996.0208
  23. Zhernov Y., Karamov E., Perminova I., Khaitov M.R., Khaitov R.M. Humic substance-based antivirals: antiretroviral activity, mechanisms of action, and impact on mucosal immunity. Allergy. 2017; 72(S103): 164–5.
  24. Neyts J., Snoeck R., Wutzler P., Cushman M., Klöcking R., Helbig B., et al. Poly (hydroxy) carboxylates as selective inhibitors of Cytomegalovirus and Herpes simplex virus replication. Antivir. Chem. Chemother. 1992; 3(4): 215–22.
  25. Корнилаева Г.В., Перминова И.В., Гилязова А.В., Хаметова К.М., Каратов Э.В. Гуминовые вещества как перспективные соединения для создания микробицидных препаратов. Российский иммунологический журнал. 2010; 4(3): 255–60.

版权所有 © Problems of Virology, 2020

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可
##common.cookie##