Clinical symptoms and signs in hamsters during experimental infection with the SARS-CoV-2 virus (Coronaviridae: Betacoronavirus)

Cover Page

Cite item

Full Text

Abstract

Introduction. At the beginning of December 2019, humanity has faced a new problem caused by coronavirus. In Hubei province of central China, epidemic events associated with severe primary viral pneumonia in humans began to develop. The isolated etiological agent was identified as a representative of Coronaviridae family. The global pandemic associated with the new coronavirus infection, acute respiratory syndrome type 2 (Severe acute respiratory syndrome 2, SARS-CoV-2), has become a challenge for humanity.

Objective. In our work, we assessed the replicative ability and pathogenesis of the SARS-CoV-2 virus in hamsters.

Materials and methods. Syrian hamsters (n=16) randomly divided into two groups were used in experiment. The first group was infected intranasally with the SARS-CoV-2 virus, strain SARS-CoV-2/human/KAZ/KZ_Almaty/2020 deposited in GenBank under number MZ379258.1. The second group remained as a control group. Clinical manifestations of the disease in hamsters were observed within 14 days. Samples were collected on days 3, 5, 7, 9, 12, and 14 postinfection. The obtained samples were tested for viral isolation in cell culture, histological examination and analysis of viral RNA by RT-PCR.

Results. SARS-CoV-2 virus isolates showed efficient replication in the lungs of hamsters, causing pathological lung lesions in animals infected intranasally. Clinical manifestations of the disease in hamsters infected with this virus were characterized by a decrease in temperature and body weight, wetness and ruffled fur, and frequent stroking of the nasal planum. High virus titers were observed following the virus isolation in cell cultures from nasal, oral swabs and lungs of animals infected intranasally. Pathological autopsy demonstrated pathological changes in the lungs. Moreover, transmission by airborne droplets has been established when a healthy hamster was kept together with animals infected using the intranasal method.

Conclusion. In conclusion, our study showed that the Syrian hamster model is a useful tool for studying the SARS-CoV-2 pathogenesis, as well as testing vaccine candidates against acute respiratory syndrome type 2.

About the authors

Moldir S. Tuyskanova

Research Institute for Biological Safety Problems; Al-Farabi Kazakh National University

Email: monica_94@list.ru
ORCID iD: 0000-0001-6565-082X

Master of Pedagogical Sciences, majoring in biology, junior researcher, Research Institute of Biological Safety Problems, Gvardeyskiy, Republic of Kazakhstan; Institute of the Ministry of Health of the Republic of Kazakhstan, Almaty, Republic of Kazakhstan

Kazakhstan, 080409, Gvardeyskiy; 050040, Almaty

Kuandyk D. Zhugunissov

Research Institute for Biological Safety Problems

Email: kuandyk_83@mail.ru
ORCID iD: 0000-0003-4238-5116

PhD, head of the laboratory Collection of microorganisms, Research Institute of Biological Safety Problems, Gvardeyskiy, Republic of Kazakhstan

Kazakhstan, 080409, Gvardeyskiy

Mehmet Ozaslan

Gaziantep University

Email: ozaslanmd@yahoo.com
ORCID iD: 0000-0001-9380-4902

professor, lecturer, Gaziantep University, Department of Biology

Turkey, 27310, Gaziantep

Balzhan S. Myrzakhmetova

Research Institute for Biological Safety Problems

Email: balzhan.msh@mail.ru
ORCID iD: 0000-0002-4141-7174

Candidate of Veterinary Sciences, Head of the Laboratory Especially Dangerous Infectious Diseases, Research Institute of Biological Safety Problems, Gvardeyskiy, Republic of Kazakhstan

Kazakhstan, 080409, Gvardeyskiy

Lespek B. Kutumbetov

Research Institute for Biological Safety Problems

Author for correspondence.
Email: lespek.k@gmail.com
ORCID iD: 0000-0001-8481-0673

professor, chief researcher, Research Institute of Biological Safety Problems, Gvardeyskiy, Republic of Kazakhstan

Kazakhstan, 080409, Gvardeyskiy

References

  1. Schalk A.F., Hawn M.C. An apparently new respiratory disease of baby chicks. J. Am. Vet. Med. Assoc. 1931; 78: 413–23.
  2. Almeida J.D., Berry D.M., Cunningham C.H., Hamre D., Hofstad M.S., Mallucci L., et al. Virology: Coronaviruses. Nature. 1968; 220: 650. https://doi.org/10.1038/220650b0
  3. Lvov D.K., ed. Viruses and Viral Infections of Humans and Animals. Handbook of Virology [Virusy i virusnye infektsii cheloveka i zhivotnykh. Rukovodstvo po virusologii]. Moscow: MIA; 2013. https://elibrary.ru/tlzmhf (in Russian)
  4. Chuchalin A.G. Severe acute respiratory syndrome (SARS). Terapevticheskiy arkhiv. 2004; 76(3): 5–11. https://elibrary.ru/ojztgl (in Russian)
  5. Shchelkanov M.Yu., Kolobukhina L.V., Lvov D.K. Human coronaviruses (Nidovirales, Coronaviridae): increased level of epidemic threat. Lechashchiy vrach. 2013; (10): 49–54. https://elibrary.ru/takhvr (in Russian)
  6. WHO. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003 (based on data as of the 31 December 2003). Available at: https://www.who.int/publications/m/item/summary-of-probable-sars-cases-with-onset-of-illness-from-1-november-2002-to-31-july-2003
  7. Li W., Shi Z., Yu M., Ren W., Smith C., Epstein J.H., et al. Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005; 310(5748): 676–9. https://doi.org/10.1126/science.1118391
  8. Menachery V.D., Yount B.L. Jr, Debbink K., Agnihothram S., Gralinski L.E., Plante J.A., et al. A SARS-like cluster of circulating bat coro- naviruses shows potential for human emergence. Nat. Med. 2015; 21(12): 1508–13. https://doi.org/10.1038/nm.3985
  9. Shchelkanov M.Yu., Popova A.Yu., Dedkov V.G., Akimkin V.G., Maleev V.V. History of investigation and current classification of coronaviruses (Nidovirales: Coronaviridae). Infektsiya i immunitet. 2020; 10(2): 221–46. https://doi.org/10.15789/2220-7619-HOI-1412 https://elibrary.ru/kziwrq (in Russian)
  10. Chuchalin A.G., ed. Pulmonology: National Guide [Pul’monologiya: natsional’noe rukovodstvo]. Moscow: GEOTAR-Media; 2016. (in Russian)
  11. Ryu S., Chun B.C. An interim review of the epidemiological characteristics of 2019 novel coronavirus. Epidemiol. Health. 2020; 42: e2020006. https://doi.org/10.4178/epih.e2020006
  12. Wu F., Zhao S., Yu B., Chen Y.M., Wang W., Song Z.G., et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020; 579(7798): 265–9. https://doi.org/10.1038/s41586-020-2008-3
  13. Gorbalenya A.E., Baker S.C., Baric R.S., de Groot R.J., Drosten C., Gulyaeva A.A., et al. Severe acute respiratory syndrome-related coronavirus: the species and its viruses – a statement of the Coronavirus Study Group. bioRxiv. 2020. Preprint. https://doi.org/10.1101/2020.02.07.937862
  14. Li Q., Guan X., Wu P., Wang X., Zhou L., Tong Y., et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med. 2020; 382(13): 1199–207. https://doi.org/10.1056/nejmoa2001316
  15. Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 CASES FROM the Chinese Center for Disease Control and Prevention. JAMA. 2020; 323(13): 1239–42. https://doi.org/10.1001/jama.2020.2648
  16. Wu J.T., Leung K., Bushman M., Kishore N., Niehus R., de Salazar P.M., et al. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nat. Med. 2020; 26(4): 506–10. https://doi.org/10.1038/s41591-020-0822-7
  17. WHO. COVID-19 vaccine tracker and landscape. Available at: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines
  18. Sia S.F., Yan L.M., Chin A.W.H., Fung K., Choy K.T., Wong A.Y.L., et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature. 2020; 583(7818): 834–8. https://doi.org/10.1038/s41586-020-2342-5
  19. Bolles M., Deming D., Long K., Agnihothram S., Whitmore A., Ferris M., et al. A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J. Virol. 2011; 85(23): 12201–15. https://doi.org/10.1128/jvi.06048-11
  20. Roberts A., Lamirande E.W., Vogel L., Jackson J.P., Paddock C.D., Guarner J., et al. Animal models and vaccines for SARS-CoV infection. Virus Res. 2008; 133(1): 20–32. https://doi.org/10.1016/j.virusres.2007.03.025
  21. Roberts A., Vogel L., Guarner J., Hayes N., Murphy B., Zaki S., et al. Severe acute respiratory syndrome coronavirus infection of golden Syrian hamsters. J. Virol. 2005; 79(1): 503–11. https://doi.org/10.1128/jvi.79.1.503-511.2005
  22. Kasenov M.M., Orynbaev M.B., Zakar’ya K., Kerimbaev A.A., Zhugunisov K.D., Sultankulova K.T., et al. The strain “SARS-CoV-2/KZ_Almaty/04.2020” of the COVID-19 coronavirus infection virus, used for the preparation of specific prophylaxis, laboratory diagnostics and evaluation of the effectiveness of biological protection of vaccines against COVID-19 coronavirus infection. Patent RK № 34762; 2020. (in Russian)
  23. Belozertseva I.V., Blinov D.V., Krasil’shchikova M.S., eds. Guidelines for the Keeping and Use of Laboratory Animals [Rukovodstvo po soderzhaniyu i ispol’zovaniyu laboratornykh zhivotnykh]. St. Petersburg; 2014. (in Russian)
  24. Bol’ B.K. Pathoanatomical Autopsy of Farm Animals [Patologoanatomicheskoe vskrytie sel’skokhozyaystvennykh zhivotnykh]. Moscow: Sel’khozgiz; 1950. (in Russian)
  25. Gretebeck L.M., Subbarao K. Animal models for SARS and MERS coronaviruses. Curr. Opin. Virol. 2015; 13: 123–9. https://doi.org/10.1016/j.coviro.2015.06.009
  26. Fehr A.R., Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol. Biol. 2015; 1282: 1–23. https://doi.org/10.1007/978-1-4939-2438-7_1
  27. Lau S.K.P., Lau C.C.Y., Chan K.H., Li C.P.Y., Chen H., Jin D.Y., et al. Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: implications for pathogenesis and treatment. J. Gen. Virol. 2013; 94(Pt. 12): 2679–90. https://doi.org/10.1099/vir.0.055533-0
  28. Chu H., Chan J.F., Yuen T.T., Shuai H., Yuan S., Wang Y., et al. Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: an observational study. Lancet Microbe. 2020; 1(1): e14–23. https://doi.org/10.1016/s2666-5247(20)30004-5
  29. Chan J.F., Zhang A.J., Yuan S., Poon V.K., Chan C.C., Lee A.C., et al. Simulation of the clinical and pathological manifestations of Coronavirus Disease 2019 (COVID-19) in golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin. Infect. Dis. 2020; 71(9): 2428–46. https://doi.org/10.1093/cid/ciaa325
  30. Galván Casas C., Català A., Carretero Hernández G., Rodríguez-Jiménez P., Fernández-Nieto D., Rodríguez-Villa Lario A., et al. Classification of the cutaneous manifestations of COVID-19: a rapid prospective nationwide consensus study in Spain with 375 cases. Br. J. Dermatol. 2020; 183(1): 71–7. https://doi.org/10.1111/bjd.19163

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Indicators of thermometry and body weight measurements of infected animals. a – results of body temperature measurements in hamsters infected intranasally: max t °C, min t °C – maximum and minimum limits of normal body temperature for hamsters; «x» – on the third day, one hamster infected by the intranasal method died; ** – to establish infection with the virus during the joint keeping of animals, one hamster was transferred from the control group to the group of animals infected by the intranasal method instead of the dead hamster; b – results of the measurements of live body weight of hamsters.

Download (653KB)
3. Fig. 2. Paraffin sections of hamster lungs. Pathohistological picture of the lung on the 3rd day after infection with SARS-CoV-2 virus. a – micrograph of the lung with diffuse damage to the alveoli, emphysema near the pleura and a small number of normally functioning alveoli; b – focal accumulation of microorganisms (indicated by an arrow) with contacting single neutrophils. Hematoxylin and eosin staining. Oс. ×10, lens ×4 (a); Oc. ×10, lens ×100 (under the immersion system) (b).

Download (1MB)
4. Fig. 3. Paraffin sections of hamster lungs. Pathohistological picture of the lung on the 7th day after infection with SARS-CoV-2 virus. a – hyperemia, stasis and hemorrhagic necrosis in the vessels and bronchioles of the organ parenchyma; b – micropicture of restoration of the respiratory membrane, hyperemia and vasodilation of capillaries, infiltration by inflammatory cells. Hematoxylin and eosin staining. Oc. ×10, lens ×10 (a); Oc. ×10, lens ×40 (b).

Download (1MB)
5. Fig. 4. Paraffin sections of hamster lungs. Pathohistological picture of the lung on the14th day after infection with SARS-CoV-2 virus. a – noticeable increase in the reducing zones of the lung parenchyma; b – bronchiole in a state of recovery with an internal content of red blood cells, microthrombi, hemorrhagic necrosis and diffuse infiltration of lymphoid tissue. Hematoxylin and eosin staining. Oc. ×10, lens ×4 (a); Oc. ×10, lens ×40 (b).

Download (1MB)
6. Fig. 5. Paraffin sections of hamster lungs. Pathohistological picture of the lungs of hamsters from the control group. a – on the 7th day after the start of the experiment; b – on the 14th day after the start of the experiment; Hematoxylin and eosin staining. Oc. ×10, lens ×4 (a); Oc. ×10, lens ×40 (b).

Download (1MB)
7. Fig. 6. Results of PCR testing of clinical and pathological materials from hamsters of the control group and those infected with the SARS-CоV-2 virus. a – nasal washes; b – oral washes; c – lung tissue.

Download (613KB)
8. Fig. 7. Virus isolation from clinical and pathological materials from hamsters infected by various methods with the SARS-CoV-2 virus. a – nasal washes; b – oral washes; c – lung tissue.

Download (361KB)

Copyright (c) 2023 Tuyskanova M.S., Zhugunissov K.D., Ozaslan M., Myrzakhmetova B.S., Kutumbetov L.B.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».