Эффект миграции никеля углеродного нановолокнистого носителя в состав активной фазы молибденсульфидного катализатора синтеза спиртов
- Авторы: Осман М.И.1, Пермяков Е.А.1, Репьёв Н.А.1,2, Максимов В.В.1, Коган В.М.1
-
Учреждения:
- ФГБУН Институт органической химии им. Н.Д. Зелинского РАН
- ФГБОУ ВО Московский государственный университет им. М.В. Ломоносова, Химический факультет
- Выпуск: Том 66, № 3 (2025)
- Страницы: 209-224
- Раздел: СТАТЬИ
- URL: https://journals.rcsi.science/0453-8811/article/view/352867
- DOI: https://doi.org/10.31857/S0453881125030068
- ID: 352867
Цитировать
Аннотация
Ключевые слова
Об авторах
М. И. Осман
ФГБУН Институт органической химии им. Н.Д. Зелинского РАН
Email: osman@ioc.ac.ru
Ленинский просп., 47, Москва, 119991 Россия
Е. А. Пермяков
ФГБУН Институт органической химии им. Н.Д. Зелинского РАН
Email: permeakra@ioc.ac.ru
Ленинский просп., 47, Москва, 119991 Россия
Н. А. Репьёв
ФГБУН Институт органической химии им. Н.Д. Зелинского РАН; ФГБОУ ВО Московский государственный университет им. М.В. Ломоносова, Химический факультетЛенинский просп., 47, Москва, 119991 Россия; Ленинские Горы, 1, стр. 3, Москва, 119991 Россия
В. В. Максимов
ФГБУН Институт органической химии им. Н.Д. Зелинского РАНЛенинский просп., 47, Москва, 119991 Россия
В. М. Коган
ФГБУН Институт органической химии им. Н.Д. Зелинского РАНЛенинский просп., 47, Москва, 119991 Россия
Список литературы
- Chu S., Majumdar A. // Nature. 2012. V. 488. P. 294. https://doi.org/10.1038/nature11475
- Surisetty V.R., Dalai A.K., Kozinski J. // Appl. Catal. A: Gen. 2011. V. 404. P. 1. https://doi.org/10.1016/j.apcata.2011.07.021
- Surisetty V.R., Eswaramoorthi I., Dalai A.K. // Fuel. 2012. V. 96. P. 77. https://doi.org/10.1016/j.fuel.2011.12.054
- Yang Y., Qi X., Wang X., Lv D., Yu F., Zhong L., Wang H., Sun Y.H. // Catal. Today. 2016. V. 270. P. 101. https://doi.org/10.1016/j.cattod.2015.06.014
- Kohl A., Linsmeier C., Taglauer E., Knozinger H. // Phys. Chem. Chem. Phys. 2001. V. 3. P. 4639. https://doi.org/10.1039/B103225A
- Hosseinia S.A., Taeba A., Feyzia F., Yaripour F. // Catal. Commun. 2004. V. 5. P. 137. https://doi.org/10.1016/j.catcom.2003.11.013
- Burch R., Hayes M.J. // J. Catal. 1997. V. 165. P. 249. https://doi.org/10.1006/jcat.1997.1482
- Muramatsu A., Tatsumi T., Tominaga H. // J. Phys. Chem. 1992. V. 96. P. 1334. https://doi.org/10.1021/j100182a058
- Hensley J.E., Pylypenko S., Ruddy D.A. // J. Catal. 2014. V. 309. P. 199. https://doi.org/10.1016/j.jcat.2013.10.001
- Da Silva R.J.G., Claassens-Dekker P., de Mattos Carvalho A.C.S., Sanseverino A.M., Quitete C.P.B., Szklo A., Sousa-Aguiar E.F. // J. Environ. Chem. Eng. 2014. V. 2. № 4. P. 2148. https://doi.org/10.1016/j.jece.2014.09.006
- Liakakou E.T., Heracleous E., Triantafyllidis K.S., Lemonidou A.A. // Appl. Catal. B: Environ. 2015. V. 165. P. 296. https://doi.org/10.1016/j.apcatb.2014.10.027
- Bremmer G.M., van Haandel L., Hensen E.J.M., Frenken J.W.M., Kooyman P.J. // Appl. Catal. B: Environ. 2019. V. 243. P. 145. https://doi.org/10.1016/j.apcatb.2018.10.014
- Kamorin M.A., Dorokhov V.S., Permyakov E.A., Eliseev O.L., Lapidus A.L., Kogan V.M. // Kinet. Catal. 2018. V. 59. P. 311. https://doi.org/10.1134/S0023158418030084
- Dipheko T.D., Osman M.E., Permyakov E.A., Maximov V.V., Ponkratova Y.Y., Dorokhov V.S., Cherednichenko A.G., Kogan V.M. // J. Phys. Chem. C. 2024. V. 128. № 28. P. 11507. https://doi.org/10.1021/acs.jpcc.4c01872
- Osman M.E., Maximov V.V., Dorokhov V.S., Mukhin V.M., Sheshko T.F., Kooyman P.J., Kogan V.M. // Catalysts. 2021. V. 11. P. 1321. https://doi.org/10.3390/catal11111321
- Osman M.E., Maximov V.V., Dipheko T.D., Sheshko T.F., Cherednichenko A.G., Nikulshin P.A., Kogan V.M. // ACS Omega. 2022. V. 7. № 24. P. 21346. https://doi.org/10.1021/acsomega.2c03082
- Osman M.E., Maximov V.V., Dipheko T.D., Permyakov E.A., Sheshko T.F., Cherednichenko A.G., Kogan V.M. // Mendeleev Commun. 2022. V. 32. № 4. P. 510. https://doi.org/10.1016/j.mencom.2022.07.026
- Osman M.E., Dipheko T.D., Maximov V.V., Sheshko T.F., Trusova E.A., Cherednichenko A.G., Kogan V.M. // Chem. Eng. Commun. 2022. V. 210. № 9. P. 1508. https://doi.org/10.1080/00986445.2022.2116323
- Dipheko T.D., Maximov V.V., Osman M.E., Eliseev O.L., Cherednichenko A.G., Sheshko T.F., Kogan V.M. // Catalysts. 2022. V. 12. № 12. P. 1497. https://doi.org/10.3390/catal12121497
- Dipheko T.D., Maximov V.V., Osman M.E., Permyakov E.A., Mozhaev A.V., Nikulshin P.A., Cherednichenko A.G., Kogan V.M. // Fuel. 2022. V. 330. P. 125512. https://doi.org/10.1016/j.fuel.2022.125512
- Dipheko T.D., Maximov V.V., Permyakov E.A., Osman M.E., Cherednichenko A.G., Kogan V.M. // S. Afr. J. Chem. Eng. 2022. V. 42. P. 290. https://doi.org/10.1016/j.sajce.2022.09.004
- Al-Fatesh A.S., Fakeeha A.H., Khan W.U., Ibrahim A.A., He S., Seshan K. // Int. J. Hydrog. Energy. 2016. V. 41. P. 22932. https://doi.org/10.1016/j.ijhydene.2016.09.027
- Majewska J., Michalkiewicz B. // Int. J. Hydrog. Energy. 2016. V. 41. P. 8668. https://doi.org/10.1016/j.ijhydene.2016.01.097
- Rastegarpanah A., Meshkani F., Rezaei M. // Int. J. Hydrog. Energy. 2017. V. 42. P. 16476. https://doi.org/10.1016/j.ijhydene.2017.05.044
- Kuvshinova G.G., Popov M.V., Tonkodubov S.E., Kuvshinov D.G. // Russ. J. Appl. Chem. 2016. V. 89. P. 1777. https://doi.org/10.1134/S1070427216110070
- Shen Y., Lua A.C. // J. Power Sources. 2015. V. 280. P. 467. https://doi.org/10.1016/j.jpowsour.2015.01.057
- Osman M.E., Dipheko T.D., Maximov V.V., Popov M.V., Nikulshin P.A., Mozhaev A.V., Kogan V.M // Energy Fuels. 2024, V. 38. № 9. P. 8103. https://doi.org/10.1021/acs.energyfuels.4c00590
- Sing K.S.W., Moscou L., Pierotti R.A., Rouquerol J., Siemieniewska T. // Pure Appl. Chem. 1985. V. 57. P. 603. https://doi.org/10.1351/pac198557040603
- Bannwarth C., Caldeweyher E., Ehlert S., Hansen A., Pracht P., Seibert J., Spicher S., Grimme S. // WIREs Comput. Mol. Sci. 2020. V. 11. e01493. https://doi.org/10.1002/wcms.1493
- Bannwarth C., Ehlert S., Grimme. S. // J. Chem. Theory Comput. 2019. V. 15. P. 1652. https://doi.org/10.1021/acs.jctc.8b01176
- Grimme S. // J. Chem. Theory Comput. 2019. V. 155. P. 2847. https://doi.org/10.1021/acs.jctc.9b00143
- Reshetenko T.V., Avdeeva L.B., Ismagilov Z.R., Chuvilin A.L., Ushakov V.A. // Appl. Catal. A: Gen. 2003. V. 247. P. 51. https://doi.org/10.1016/S0926-860X(03)00080-2
- Liu X., Zhao L., Li Y., Fang K., Wu M. // Catalysts. 2019. V. 9. P. 525. https://doi.org/10.3390/catal9060525
- Besenbacher F., Brorson M., Clausen B.S., Helveg S., Hinnemann B., Kibsgaard J., Lauritsen J.V., Moses P.G., Nørskov J.K., Topsøe H. // Catal. Today. 2008. V. 130. P. 86. https://doi.org/10.1016/j.cattod.2007.08.009
- Krebs E., Silvi B., Raybaud P. // Catal. Today. 2008. V. 130. P. 160. https://doi.org/10.1016/j.cattod.2007.06.081
- Klimov O.V., Nadeina K.A., Dik P.P., Koryakina G.I., Pereyma V.Yu., Kazakov M.O., Budukva S.V., Gerasimov E.Yu., Prosvirin I.P., Kochubey D.I., Noskov A.S. // Catal. Today. 2016. V. 271. P. 56. https://doi.org/10.1016/j.cattod.2015.11.004
- Giannozzi P., Andreussi O., Brumme T., Bunau O., Buongiorno Nardelli M., Calandra M., Car R., Cavazzoni C., Ceresoli D., Cococcioni M., Colonna N., Carnimeo I., Dal Corso A., de Gironcoli S., Delugas P., et all. // J. Phys. Condens. Matter. 2017. V. 29. P. 465901. https://doi.org/10.1088/1361-648X/aa8f79
- Liang W., Yan H., Chen C., Lin D., Tan K., Feng X., Liu Y., Chen X., Yang C., Shan H. // Catalysts. 2020. V. 10. P. 890. https://doi.org/10.3390/catal10080890
- Goldsmith B.R., Sanderson E.D., Ouyang R., Li W.X. // J. Phys. Chem. C. 2014. V. 118. P. 9588. https://doi.org/10.1021/jp502201f
- Nasrullayev N.M. // Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2005. V. 35. P. 565. https://doi.org/10.1080/15533170500199042
- Krasheninnikov A.V., Lehtinen P.O., Foster A.S., Pyykko P., Nieminen R.M. // Phys. Rev. Lett. 2009. V. 102. P. 126807. https://doi.org/10.1103/PhysRevLett.102.126807
- Lauritsen J.V., Kibsgaard J., Olesen G.H., Moses P.G., Hinnemann B., Helveg S., Nørskov J.K., Clausen B.S., Topsøe H., Lægsgaard E., Besenbacher F. // J. Catal. 2007. V. 249. P. 220. https://doi.org/10.1016/j.jcat.2007.04.013
- Kogan V.M., Nikulshin P.A., Rozhdestvenskaya N.A. // Fuel. 2012. V. 100. P. 2. https://doi.org/10.1016/j.fuel.2011.11.016
- Permyakov E.A., Dorokhov V.S., Maximov V.V., Nikulshin P.A., Pimerzin A.A., Kogan V.M. // Catal. Today. 2018. V. 305. P. 19. https://doi.org/10.1016/j.cattod.2017.10.041
- Liu C., Cui X.Y., Song Y.H., Zhu M.L., Liu Z.T., Liu Z.W. // ChemCatChem. 2019. V. 11. P. 1112. https://doi.org/10.1002/cctc.201801588
- Maximov V.V., Permyakov E., Dorokhov V., Wang Y., Kooyman P.J., Kogan V.M. // ChemCatChem. 2020. V. 12. P. 1443. https://doi.org/10.1002/cctc.201901698
- Dorokhov V.S., Permyakov E.A., Nikulshin P.A., Maximov V.V., Kogan V.M. // J. Catal. 2016. V. 344. P. 841. https://doi.org/10.1016/j.jcat.2016.08.005
Дополнительные файлы



