Study of the Effect of Metal Modifiers on the Properties of Nickel Catalysts for Hydrogen Storage Technology Using Methylcyclohexane

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This study presents the results of an investigation into the properties of bulk nickel-based catalysts Cu/Ni-SiO2, Zn/Ni-SiO2, and Sn/Ni-SiO2 for the reversible toluene hydrogenation/methylcyclohexane dehydrogenation processes used in hydrogen storage technology. A comprehensive physicochemical characterization was carried out, including low-temperature nitrogen adsorption, X-ray diffraction, CO chemisorption, H2 temperature-programmed reduction, and temperature-programmed desorption of toluene. It was established that the modification of nickel catalysts with Cu, Zn, and Sn significantly affects the structure of active phases and catalyst properties. The highest selectivity toward toluene in the dehydrogenation of methylcyclohexane was exhibited by zinc- and tin-modified catalysts, with selectivity values of 97 and 99%, respectively. The obtained results confirm the feasibility of developing efficient dehydrogenation catalysts for liquid organic hydrogen carriers (LOHCs) based on nickel without the use of noble metals.

About the authors

S. A. Stepanenko

Boreskov Institute of Catalysis SB RAS

Email: stepanenko@catalysis.ru
Novosibirsk, Russia

A. P. Koskin

Boreskov Institute of Catalysis SB RAS

Novosibirsk, Russia

V. A. Yakovlev

Boreskov Institute of Catalysis SB RAS

Novosibirsk, Russia

References

  1. Концепция развития водородной энергетики в Российской Федерации. Утверждена распоряжением правительством РФ от 05.08.2021 № 2162-Р, 2021. P. 1.
  2. Макарян И.А., Седов И.В. Максимов А.Л. Хранение водорода с использованием жидких органических носителей (обзор) // Журнал прикладной химии. 2020. Т. 93. № 12. С. 1716.
  3. Niermann M., Beckendorff A., Kaltschmitt M., Bonhoff K. Liquid Organic Hydrogen Carrier (LOHC) – Assessment based on chemical and economic properties // Int. J. Hydrogen Energy. 2019. V. 44. № 13. P. 6631.
  4. Spatolisano E., Matichecchia A., Pellegrini L.A., de Angelis A.R., Cattaneo S., Roccaro E. Toluene as effective LOHC: detailed techno-economic assessment to identify challenges and opportunities. 2023. P. 3245–3250.
  5. Perreault P., Van Hoecke L., Pourfallah H., Kummamuru N.B., Boruntea C.R., Preuster P. Critical challenges towards the commercial rollouts of a LOHC-based H2 economy // Curr. Opin. Green Sustain. Chem. 2023. V. 41. Art. 100836.
  6. Sisakova K., Podrojkova N., Orinakova R., Orinak A. Novel catalysts for dibenzyltoluene as a potential liquid organic hydrogen carrier use-A mini-review // Energy Fuels. 2021. V. 35. № 9. P. 7608.
  7. Wang Q., Le K., Lin Y., Yin W., Lin Y., Alekseeva M.V., Yakovlev V.A., Koskin A.P., Yang C., Qiu, T. Investigation on catalytic distillation dehydrogenation of perhydro-benzyltoluene: Reaction kinetics, modeling and process analysis // Chem. Eng. J. 2024. V. 482. Art. 148591.
  8. Stepanenko S.A., Shivtsov D.M., Koskin A.P., Koskin I.P., Kukushkin R.G., Yeletsky P.M., Yakovlev V.A. N-Heterocyclic molecules as potential liquid organic hydrogen carriers: reaction routes and dehydrogenation efficacy // Catalysts. 2022. V. 12. № 10. P. 1260.
  9. Stepanenko S.A., Koskin A.P., Kukushkin R.G., Yeletsky P.M. State-of-art of liquid hydrogen carriers: trends in the selection of organic molecules // Curr. Org. Chem. 2023. V. 27. № 19. P. 1677.
  10. Koskin A.P., Zhang J., Belskaya O.B., Bulavchenko O.A., Konovalova D.A., Stepanenko S.A., Ishchenko A.V., Danilova I.G., Yurpalov V.L., Larichev Y.V., Kukushkin R.G. Efficiency of high-loaded nickel catalysts modified by Mg in hydrogen storage/extraction using quinoline/decahydroquinoline pair as LOHC substrates // J. Magnes. Alloy. 2024. V. 12. № 8. P. 3245.
  11. Tan R., Ji Q., Ling Y., Li L. Advances in liquid organic hydrogen carriers: developing efficient dehydrogenation strategies // Chem. Commun. 2024. V. 60. № 63. P. 8186.
  12. Dai X., Verma R., Zhang X., Bai J., Verma S.K., Yun H., Wang J., Dixit C.K., Verma S.K. Critical analysis on catalytic methylcyclohexane dehydrogenation reaction: A review // Int. J. Hydrogen Energy. 2025. V. 141. P. 691.
  13. Шивцов Д.М., Афонникова С.Д., Мишаков И.В., Ведягин А.А. Палладийсодержащие катализаторы на основе функционализованных УНВ для дегидрирования метилциклогексана // Кинетика и Катализ. 2023. Т. 64. № 6. С. 857.
  14. Gao J., Li N., Zhang D., Zhao S., Zhao Y. The progress of research based on methylcyclohexane dehydrogenation technology: A review // Int. J. Hydrogen Energy. 2024. V. 85. P. 865.
  15. Alghamdi H.S., Ali A., Ajeebi A.M., Jedidi A., Sanhoob M., Aktary M., Shabi A.H., Usman M., Alghamdi W., Alzahrani S., Abdul Aziz M. Catalysts for liquid organic hydrogen carriers (LOHCs): Efficient storage and transport for renewable energy // Chem. Rec. 2024. V. 24. № 11, e202400082.
  16. Zhou M.J., Miao Y., Gu Y., Xie Y. Recent advances in reversible liquid organic hydrogen carrier systems: from hydrogen carriers to catalysts // Adv. Mater. 2024. V. 36. № 37. P. 1.
  17. Al-ShaikhAli A. H., Jedidi A., Cavallo L., & Takanabe K. Non-precious bimetallic catalysts for selective dehydrogenation of an organic chemical hydride system // Chem. Commun. 2015. V. 51. № 65. P. 12931.
  18. Al-ShaikhAli A. H., Jedidi A., Anjum D. H., Cavallo L., Takanabe K. Kinetics on NiZn bimetallic catalysts for hydrogen evolution via selective dehydrogenation of methylcyclohexane to toluene // ACS Catal. 2017. V. 7. № 3. P. 1592.
  19. Patil S.P., Pande J.V., Biniwale R.B. Non-noble Ni–Cu/ACC bimetallic catalyst for dehydrogenation of liquid organic hydrides for hydrogen storage // Int. J. Hydrogen Energy. 2013. V. 38. № 35. P. 15233.
  20. Xia Z., Liu H., Lu H., Zhang Z., Chen Y. Study on catalytic properties and carbon deposition of Ni–Cu/SBA15 for cyclohexane dehydrogenation // Appl. Surf. Sci. 2017. V. 422. P. 905.
  21. Ermakova M.A., Ermakov D.Y. High-loaded nickel-silica catalysts for hydrogenation, prepared by solgel: Route – Structure and catalytic behavior // Appl. Catal. A: Gen. 2003. V. 245. № 2. P. 277.
  22. Ermakova M.A., Ermakov D.Y., Cherepanova S.V., Plyasova L.M. Synthesis of ultradispersed nickel particles by reduction of high-loaded NiO–SiO2 systems prepared by heterophase sol-gel method // J. Phys. Chem. B. 2002. V. 106. № 46. P. 11922.
  23. Gor G. Y., Thommes M., Cychosz K. A., Neimark A. V. Quenched solid density functional theory method for characterization of mesoporous carbons by nitrogen adsorption // Carbon. 2012. V. 50. № 4. P. 1583.
  24. Zhu T., Song H., Li F., Chen Y. Hydrodeoxygenation of Benzofuran over Bimetallic Ni–Cu/γ-Al2O3 Catalysts // Catalysts. 2020. V. 10. № 3. P. 274.
  25. Obeso-Estrella R., Yocupicio-Gaxiola R.I., Flores-Sanchez L.A., Quintana-Melgoza J.M., Valdez R., Simakov A., Petranovskii V. Influence of temperature and volume ratio of Cu:Ni exchange solutions on the chemical properties of the guest metals in prepared CuNi–mordenite materials: Evidence of direct competition between copper and nickel ions // Micropor. Mesopor. Mater. 2023. V. 362. Art. 112797.
  26. Loricera C.V., Castaño P., Infantes-Molina A., Hita I., Gutiérrez A., Arandes J.M., Fierro J.L.G., Pawelec B. Designing supported ZnNi catalysts for the removal of oxygen from bio-liquids and aromatics from diesel // Green Chem. 2012. V. 14. № 10. P. 2759.
  27. Golubina E.V., Lokteva E.S., Erokhin A.V., Murzin V.Y., Chernikova V.S., Veligzhanin A.A. Formation of active centers of nickel–zinc catalysts deposited on the nanodiamond for the selective hydrogenation of phenylacetylene // Russ. J. Phys. Chem. A. 2021. V. 95. № 3. P. 492.
  28. Chen L.C., Lin S.D. The ethanol steam reforming over Cu–Ni/SiO2 catalysts: Effect of Cu/Ni ratio // Appl. Catal. B: Environ. 2011. V. 106. № 3–4. P. 639.
  29. Bykova M.V., Ermakov D.Y., Khromova S.A., Smirnov A.A., Lebedev M.Y., Yakovlev V.А. Stabilized Nibased catalysts for bio-oil hydrotreatment: Reactivity studies using guaiacol // Catal. Today. 2014. V. 220– 222. P. 21.
  30. Mikhnenko M.D., Cherepanova S.V., Shmakov A.N., Alekseeva M.V., Kukushkin R.G., Yakovlev V.A., Pakharukova V.P., Bulavchenko O.A. Structural features investigation of a highly dispersed NiO–SiO2 catalyst by X-Ray analysis of the atomic pair distribution function // Poverhnostʹ. Rentgenovskie, sinhrotronnye i nejtronnye issledovaniâ. 2024. № 6. P. 23–30.
  31. Asedegbega-Nieto E., Guerrero-Ruíz A., Rodríguez-Ramos I. Study of CO chemisorption on graphite-supported Ru–Cu and Ni–Cu bimetallic catalysts // Thermochim. Acta. 2005. V. 434. № 1–2. P. 113.
  32. da Silva F.D. A. R., dos Santos R.C.R., Nunes R.S., Valentini A. Role of tin on the electronic properties of Ni/Al2O3 catalyst and its effect over the methane dry reforming reaction // Appl. Catal. A Gen. 2021. Vol. 618. P. 118129.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).