Study of the Phosphorus Promoting Effect on Palladium Alumina Catalysts for the Dehydrogenation of Perhydrophenazine

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of phosphorus addition on the activity of palladium catalysts (1% Pd/Al2O3-xP, where x equals 1–30 wt%) in the dehydrogenation reaction of perhydrophenazine, a promising liquid organic hydrogen carrier (LOHC), was investigated. It is shown by Brunauer-Emmett-Teller method, X-Ray diffraction analysis, transmission electron microscopy, X-ray photoelectron spectroscopy and CO chemisorption methods that the addition of phosphorus changes the support structure, increasing the specific surface area and modifying the electronic state of palladium nanoparticles. Optimal phosphorus content (10 wt%) provides maximum catalytic activity (hydrogen yield 76% at 200°C) due to the formation of electron-deficient Pd centers and palladium phosphides. Further increase of phosphorus concentration (>15%) decreases the activity due to blocking of active centers and decrease of specific surface area.

About the authors

D. A Konovalova

Boreskov Institute of Catalysis

Novosibirsk, Russia

Yu. V Larichev

Boreskov Institute of Catalysis

Email: ylarichev@gmail.com
Novosibirsk, Russia

A. P Koskin

Boreskov Institute of Catalysis

Email: koskin@catalysis.ru
Novosibirsk, Russia

References

  1. Kirichenko O.A., Kustov L.M. Recent progress in development of supported palladium catalysts for dehydrogenation of heterocyclic liquid organic hydrogen carriers (LOHC) // Int. J. Hydrogen Energy. 2024. V. 88. P. 97.
  2. Gianotti E., Taillades-Jacquin M., Rozière J., Jones D.J. High-purity hydrogen generation via dehydrogenation of organic carriers: a review on the catalytic process // ACS Catal. 2018. V. 8. № 5. P. 4660.
  3. Aakko-Saksa P.T., Cook C., Kiviaho J., Repo T. Liquid organic hydrogen carriers for transportation and storing of renewable energy – Review and discussion // J. Power Sources. 2018. V. 396. P. 803.
  4. Preuster P., Papp C., Wasserscheid P. Liquid organic hydrogen carriers (LOHCs): toward a hydrogen-free hydrogen economy // Acc. Сhem. Res. 2017. V. 50. № 1. P. 74.
  5. Maqbool M.A., Khan J., Hamayun M.H., Ahmed F., Hussain M. Optimal retrofitting of MCH-Toluene dehydrogenation system: Energy and technoeconomic analysis // Energy Convers. Manage. 2023. V. 286. Art. 117049.
  6. Koskin A.P., Stepanenko S.A., Alekseeva M.V., Bulavchenko O.A., Gerasimov E.Y., Lysikov A.I., Yeletsky P.M., Kaichev V.V., Yakovlev V.A. The origin of extraordinary selectivity in dehydrogenation of methylcyclohexane over Ni-Sn-based catalysts // Chem. Eng. J. 2023. V. 476. Art. 146629.
  7. Alekseeva M.V., Gulyaeva Y.K., Bulavchenko O.A., Saraev A.A., Kremneva A.M., Stepanenko S.A., Koskin A.P., Kaichev V.V., Yakovlev V.A. Promoting effect of Zn in high-loading Zn/Ni-SiO 2 catalysts for selective hydrogen evolution from methylcyclohexane // Dalton Trans. 2022. V. 51. № 15. P. 6068.
  8. Niermann M., Beckendorff A., Kaltschmitt M., Bonhoff K. Liquid Organic Hydrogen Carrier (LOHC) – Assessment based on chemical and economic properties // Int. J. Hydrogen Energy. 2019. V. 44. № 13. P. 6631.
  9. Modisha P., Bessarabov D. Aromatic liquid organic hydrogen carriers for hydrogen storage and release // Curr. Opin. Green Sustain. Chem. 2023. V. 42. Art. 100820.
  10. Sisakova K., Podrojkova N., Orinakova R., Orinak A. Novel catalysts for dibenzyltoluene as a potential Liquid Organic Hydrogen Carrier use – A mini-review // Energy Fuels. 2021. V. 35. № 9. P. 7608.
  11. Koskin A.P., Zhang J., Belskaya O.B., Bulavchenko O.A., Konovalova D.A., Stepanenko S.A., Ishchenko A.V., Danilova I.G., Yurpalov V.L., Larichev Y.V., Kukushkin R.G. Efficiency of high-loaded nickel catalysts modified by Mg in hydrogen storage/extraction using quinoline/decahydroquinoline pair as LOHC substrates // J. Magnes. Alloys. 2024. V. 12. № 8. P. 3245.
  12. Stepanenko S.A., Shivtsov D.M., Koskin A.P., Koskin I.P., Kukushkin R.G., Yeletsky P.M., Yakovlev V.A. N-Heterocyclic molecules as potential liquid organic hydrogen carriers: Reaction routes and dehydrogenation efficacy // Catalysts. 2022. V. 12. № 10. P. 1260.
  13. Forberg D., Schwob T., Zaheer M., Friedrich M., Miyajima N., Kempe R. Single-catalyst high-weight% hydrogen storage in an N-heterocycle synthesized from lignin hydrogenolysis products and ammonia // Nature Commun. 2016. V. 7. № 1. Art. 13201.
  14. Navlani-García M., Salinas-Torres D., Cazorla-Amorós D. Hydrogen production from formic acid attained by bimetallic heterogeneous PdAg catalytic systems // Energies. 2019. V. 12. № 21. P. 4027.
  15. Koskin A.P., Larichev Y.V., Stepanenko S.A., Dubinin Y.V., Ayupov A.B., Saraev A.A., Suprun E.A., Yeletsky P.M. Carbonized melamine cyanurate as a palladium catalyst support for the dehydrogenation of N-heterocyclic compounds in LOHC technology // C. 2023. V. 9. № 3. P. 83.
  16. Mironenko R.M., Belskaya O.B., Likholobov V.A. Approaches to the synthesis of Pd/C catalysts with controllable activity and selectivity in hydrogenation reactions // Catal. Today. 2020. V. 357. P. 152.
  17. Li Y., Ye J., Xu T., Xia G., Yu X. Boosting dehydrogenation of dodecahydro-N-ethylcarbazole over Pd nanoclusters with tailored electronic structures loaded on nitrogen-doped carbon // Int. J. Hydrogen Energy. 2024. V. 65. P. 769.
  18. Schuster R., Waidhas F., Bertram M., Runge H., Geile S., Shayduk R., Abuín M., Vonk V., Noei H., Lykhach Y., Bertram F., Stierle A., Libuda J. Dehydrogenation of liquid organic hydrogen carriers on supported Pd model catalysts: carbon incorporation under operation conditions // Catal. Lett. 2018. V. 148. P. 2901.
  19. Ren T., Qi W., He Z., Yan N. One-pot production of phenazine from lignin-derived catechol // Green Chem. 2022. V. 24. № 3. P. 1224.
  20. Kaur N. Palladium catalysts: synthesis of five-membered N-heterocycles fused with other heterocycles // Catal. Rev. 2015. V. 57. № 1. P. 1.
  21. Aronica L.A., Albano G. Supported metal catalysts for the synthesis of N-heterocycles // Catalysts. 2022. V. 12. № 1. P. 68.
  22. Larock R.C., Babu S. Synthesis of nitrogen heterocycles via palladium-catalyzed intramolecular cyclization // Tetrahedron Lett. 1987. V. 28. № 44. P. 5291.
  23. Ballav T., Chakrabortty R., Das A., Ghosh S., Ganesh V. Palladium‐catalyzed dual catalytic synthesis of heterocycles // Eur. J. Org. Chem. 2022. V. 2022. № 30. Art. e202200553.
  24. Alconada K., Agirre I., Barrio V.L. Synergistic effects of Pt-doping in Ni/Al2O3 catalysts for hydrogen storage using benzyltoluene as LOHC // Int. J. Hydrogen Energy. 2025. V. 130. P. 631.
  25. Konovalova D.A., Larichev Y.V., Stepanenko S.A., Shivtsov D.M., Borodina O.A., Kvon R.I., Yeletsky P.M., Koskin A.P., Yakovlev V.A. P-Doped-activated carbon-supported Pd catalysts for synthesis and dehydrogenation of tetradecahydrophenazine as a LOHC substrate // Energy Fuels. 2025. V. 39. P. 14782.
  26. Liu L., Zhu T., Han W., Ding Y., Dong Y., Yang M. Enhanced catalysis of Pd/Al2O3-SiO2 for perhydro-N-propylcarbazole dehydrogenation: Effect of Al/Si ratio on acidity and Pd particle size // Mol. Catal. 2023. V. 543. Art. 113114.
  27. Yook H., Jeong K., Hwang J., Hoon Park J., Woo Han J. Roles of bridge carbon and heteroatom during the dehydrogenation reaction of dicyclohexylmethane derivatives on Pd and Pt catalysts for liquid organic hydrogen carrier // Appl. Catal. B: Environ. 2024. V. 342. Art. 123394.
  28. Sampath A., Flaherty D.W. Effects of phosphorus addition on selectivity and stability of Pd model catalysts during cyclohexene dehydrogenation // Catal. Sci. Technol. 2020. V.10. P. 993.
  29. Autthanit C., Khaochartchai C., Praserthdam P., Jongsomjit B. Elucidation of Pd modification effect on catalytic behaviors of γ-Al2O3-P catalysts toward ethanol dehydration and dehydrogenation // Catal. Commun. 2021. V. 148. Art. 106169.
  30. Gor G.Y., Thommes M., Cychosz K.A., Neimark A.V. Quenched solid density functional theory method for characterization of mesoporous carbons by nitrogen adsorption // Carbon. 2012. V. 50. № 4. P. 1583.
  31. Li A., Wang Y.H., Ren J., Zhang J.L., Li W., Guo C.L. Enhanced catalytic activity and stability over P-modified alumina supported Pd for anthraquinone hydrogenation // Appl. Catal. A: Gen. 2020. V. 593. Art. 117422.
  32. Shen M., Song L., Wang J., Wang X. Improved palladium only three-way catalysts using phosphorus modified alumina support // Catal. Commun. 2012. V. 22. P. 28.
  33. Dobbelaere T., Roy A.K., Vereecken P., Detavernier C. Atomic layer deposition of aluminum phosphate based on the plasma polymerization of trimethyl phosphate // Chem. Mater. 2014. V. 26. № 23. P. 6863.
  34. Moulder J.F., Stickle W.F., Sobol P.E., Bomben K.D. Handbook of X-ray photoelectron spectroscopy. Eden Prairie: Perkin–Elmer Corp., 1992.
  35. Salnikova K.E., Larichev Yu.V., Sulman E.M., Bykov A.V., Sidorov A.I., Demidenko G.N., Sulman M.G., Bronstein L.M., Matveeva V.G. Selective hydrogenation of biomass-derived furfural: Enhanced catalytic performance of Pd–Cu Alloy Nanoparticles in Porous Polymer // ChemPlusChem. 2020. V. 85. P. 1697.
  36. Белых Л.Б., Стеренчук Т.П., Скрипов Н.И., Акимов В.В., Таусон В.Л., Романченко А.С., Гвоздовская К.Л., Санжиева С.Б., Шмидт Ф.К. Влияние состояния поверхностного слоя на свойства Pd–P-катализаторов в гидрировании алкилантрахинонов // Кинетика и катализ. 2019. Т. 60. № 6. С. 788.
  37. Белых Л.Б., Корнаухова Т.А., Скрипов Н.И., Миленькая Е.А., Мальцев А.А., Шмидт Ф.К. Эффективные катализаторы получения пероксида водорода антрахиноновым методом на основе палладий-фосфорных частиц // Кинетика и катализ. 2024. Т. 65. № 6. С. 659.
  38. Belykh L.B., Skripov N.I., Sterenchuk T.P., Milenkaya E.A., Kornaukhova T.A., Schmidt F.K. Effect of a phosphorus modifier on the behavior of palladium catalysts in direct synthesis of hydrogen peroxide // Appl. Catal. A: Gen. 2023. V. 664. Art. 119330.
  39. Shivtsov D.M., Koskin A.P., Stepanenko S.A., Ilyina E.V., Ayupov A.B., Bedilo A.F., Yakovlev V.A. Hydrogen production by N-heterocycle dehydrogenation over Pd supported on aerogel-prepared Mg–Al oxides // Catalysts. 2023. V. 13. № 2. P. 334.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).