Dry reforming of methane into synthesis gas on oxide catalysts Ni/CexSn1–xO2: effect of the template nature

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The work is devoted to revealing the influence of the synthesis method, namely the nature of the template, on the catalytic properties of the supported Ni/CexSn1–xO2 systems in dry reforming of methane (DRM) in a flow system with a fixed catalyst bed. A comparison of the characteristics of catalysts obtained using different templates (ionic – cetyltrimethylammonium bromide (CTAB), non-ionic polymer Pluronic-123 (P123), biotemplate – pine sawdust) and containing cerium and tin in a molar ratio of Ce : Sn = 9:1 was carried out. The mass content of nickel was 3%. The catalysts were characterized by temperature-programmed reduction with hydrogen, X-ray diffraction, X-ray photoelectron spectroscopy, scanning and transmission electron microscopy with energy-dispersive X-ray analysis, and magnetometry. The systems obtained in the presence of the biotemplate and P123 were active in CDRM. The highest values of steady-state conversion of methane (11%) and carbon dioxide (29%) were provided by the Ni/CeO2–SnO2–P123 catalyst. Analysis of the results of physicochemical methods showed that the Ni/CeO2–SnO2–P123 sample has the most uniform distribution and increased dispersion of nickel particles. It was found that the use of the P123 polymer template contributes to the formation of a greater number of interaction centers of nickel with the tin-containing oxide phase in the Ni/CexSn1–xO2–P123. The nature of the template significantly affects the structural state of the active component and, as a consequence, the catalytic characteristics in DRM.

About the authors

I. Yu. Kaplin

Lomonosov Moscow State University

Email: kaplinigormsu@gmail.com
ORCID iD: 0000-0002-5091-6290
Moscow, Russia

A. A. Zorina

Lomonosov Moscow State University

Moscow, Russia

E. S. Lokteva

Lomonosov Moscow State University

ORCID iD: 0000-0003-3510-4822
Moscow, Russia

P. A. Chernavsky

Lomonosov Moscow State University; A.V. Topchiev Institute of Petrochemical Synthesis RAS; N.D. Zelinsky Institute of Organic Chemistry RAS

ORCID iD: 0000-0001-8443-8541
Moscow, Russia; Moscow, Russia; Moscow, Russia

E. V. Golubina

Lomonosov Moscow State University

ORCID iD: 0000-0002-1040-1428
Moscow, Russia

A. O. Kamaev

Lomonosov Moscow State University

ORCID iD: 0000-0002-6648-0647
Moscow, Russia

S. V. Maksimov

Lomonosov Moscow State University

ORCID iD: 0000-0002-0672-2683
Moscow, Russia

K. I. Maslakov

Lomonosov Moscow State University

Moscow, Russia

References

  1. Usman M., Wan Daud W.M.A., Abbas H.F. // Renew. Sustain. Energy Rev. 2015. V. 45. P. 710.
  2. Rostrup-Nielsen J., Sehested J., Nørskov J. // Adv. Catal. 2002. V. 47. P. 65.
  3. Nagaoka K., Okamura M., Aika K. // Catal. Commun. 2001. V. 2. № 8. P. 255.
  4. de Araújo Moreira T.G., de Carvalho Filho J.F.S., Carvalho Y., de Almeida J.M.A.R., Romano P.N., Sousa-Aguiar E.F. // Fuel. 2021. V. 287. Art. 119536.
  5. García-Diéguez M., Finocchio E., Larrubia M.Á., Alemany L.J., Busca G. // J. Catal. 2010. V. 274. № 1. P.11.
  6. Wang H., Ruckenstein E. // Appl. Catal. A: Gen. 2001. V. 209. № 1–2. P. 207.
  7. San José-Alonso D., Illán-Gómez M.J., Román-Martínez M.C. // Int. J Hydrogen Energy. 2013. V. 38. № 5. P. 2230.
  8. Nikoo M., Amin N. // Fuel Process. Technol. 2011. V.92. № 3. P. 678.
  9. Aramouni N.A.K., Zeaiter J., Kwapinski W., AhmadM.N. // Energy Convers. Manag. 2017. V. 150. P.614.
  10. Han J.W., Park J.S., Choi M.S., Lee H. // Appl. Catal. B: Environ. 2017. V. 203. P. 625.
  11. Amin M.H., Mantri K., Newnham J., Tardio J., Bhargava S.K. // Appl. Catal. B: Environ. 2012. V. 119–120. P. 217.
  12. Gallego G.S., Mondragón F., Barrault J., Tatibouët J.-M., Batiot-Dupeyrat C. // Appl. Catal. A: Gen. 2006. V.311. P. 164.
  13. Bhavani A.G., Kim W.Y., Kim J.Y., Lee J.S. // Appl. Catal. A: Gen. 2013. V. 450. P. 63.
  14. Kim J.-H., Suh D.J., Park T.-J., Kim K.-L. // Appl. Catal. A: Gen. 2000. V. 197. № 2. P. 191.
  15. Guo J., Lou H., Zhao H., Chai D., Zheng X. // Appl. Catal. A: Gen. 2004. V. 273 № 1–2. P. 75.
  16. Liu Z., Grinter D.C., Lustemberg P.G., Nguyen-Phan T.-D., Zhou Y., Luo S., Waluyo, I., Crumlin E.J., StacchiolaD.J., Zhou J., Carrasco J., Busnengo H.F., Ganduglia-Pirovano M.V., Senanayake S.D., Rodriguez J.A. // Angew. Chem. Int. Ed. 2016. V. 55. № 26. P. 7455.
  17. Makri M.M., Vasiliades M.A., Petallidou K.C., Efstathiou A.M. // Catal. Today. 2016. V. 259. P. 150.
  18. Damaskinos C.M., Vasiliades M.A., Efstathiou A.M. // Appl. Catal. A: Gen. 2019. V. 579. P. 116.
  19. Kašpar J., Fornasiero P., Graziani M. // Catal. Today. 1999. V. 50. № 2. P. 285.
  20. Das S., Jangam A., Jayaprakash S., Mandal S., Gosavi P.V., Chilukuri S. // Appl. Catal. B: Environ. 2021. V.290. Art. 119998.
  21. Ayastuy J.L., Iglesias-González A., Gutiérrez-OrtizM.A.// Chem. Eng. J. 2014. V. 244. P. 372.
  22. Gupta A., Hegde M.S., Priolkar K.R., Waghmare U.V., Sarode P.R., Emura S. // Chem. Mater. 2009. V. 21. №24. P. 5836.
  23. Stonkus O.A., Zadesenets A.V., Slavinskaya E.M., Stadnichenko A.I., Svetlichnyi V.A., Shubin Y.V., KorenevS.V., Boronin A.I. // Catal. Commun. 2022. V.172. Art. 106554.
  24. Slavinskaya E.M., Zadesenets A.V., Stonkus O.A., Stadnichenko A.I., Shchukarev A.V., Shubin Y.V., KorenevS.V., Boronin A.I. // Appl. Catal. B: Environ. 2020. V. 277. Art. 119275.
  25. Gu Y., Liu C., Li Y., Sui X., Wang K., Wang Z. // J.Power Sources. 2014. V. 265. P. 335.
  26. Baidya T., Gupta A., Deshpandey P. A., Madras G., Hegde M.S. // J. Phys. Chem. C 2009. V. 113. № 10. P. 4059.
  27. Trovarelli A., Zamar F., Llorca J., de Leitenburg C., Dolcetti G., Kiss J.T. // J. Catal. 1997. V. 169. № 2. P.490.
  28. Rossignol S., Madier Y., Duprez D. // Catal. Today. 1999. V. 50. № 2. P. 261.
  29. Montoya J., Romero-Pascual E., Gimon C. // Catal. Today. 2000. V. 63. № 1. P. 71.
  30. Larrondo S., Vidal M.A., Irigoyen B., Craievich A.F., Lamas D.G. // Catal. Today 2005. V. 107. P. 53.
  31. Kaplin I.Yu., Lokteva E.S., Golubina E.V., Lunin V.V. // Molecules 2020. V. 25. № 18. P. 4242.
  32. Kaplin I.Yu., Lokteva E.S., Tikhonov A.V., MaslakovK.I., Isaikina O.Yu., Golubina E.V. // Catalysts. 2022. V. 12. № 12. P. 1575.
  33. Kaplin I.Yu., Lokteva E.S., Tikhonov A.V., ZhilyaevK.A., Golubina E.V., Maslakov K.I., Kamaev A.O., Isaikina O.Yu. // Top. Catal. 2020. V. 63. № 1–2. P. 86.
  34. Chen J., Wu Q., Zhang J., Zhang J. // Fuel 2008. V. 87. № 13–14. P. 2901.
  35. Chernavskii P., Pankina G., Lunin V. // Russ. Chem. Rev. 2011. V. 80. № 6. P. 579.
  36. Kambolis A., Matralis H., Trovarelli A., Papadopoulou C. // Appl. Catal. A: Gen. 2010. V. 377. № 1–2. P. 16.
  37. Wolfbeisser A., Sophiphun O., Bernardi J., Wittayakun J., Föttinger K., Rupprechter G. // Catal. Today 2016. V. 277. P. 234.
  38. Yao X., Xiong Y., Zou W., Zhang L., Wu S., Dong X., Gao F., Deng Y., Tang C., Chen Z., Dong L., Chen Y. // Appl. Catal. B: Environ. 2014. V. 144. P. 152.
  39. Yao H.C., Yao Y.F.Y. // J. Catal. 1984. V. 86. № 2. P. 254.
  40. Takeguchi T., Furukawa S., Inoue M. // J. Catal. 2001. V. 202. № 1. P. 14.
  41. Ashok J., Ang M., Kawi S. // Catal. Today. 2017. V. 281. P. 304.
  42. Kuhlenbeck H., Odörfer G., Jaeger R. M., Illing G., Menges M., Mull Th., Freund H.-J., Pöhlchen M., Staemmler V., Witzel S., Scharfschwerdt C., Wennemann K., Liedtke T., Neumann M. // Phys. Rev. B 1991. V. 43. № 3. P. 1969.
  43. Mansour A. // Surf. Sci. Spectra. 1994. V. 3. № 3. P. 239.
  44. Biesinger M.C., Lau L.W.M., Gerson A.R., Smart R.S.C. // Phys. Chem. Chem. Phys. 2012. V. 14. №7. P. 2434.
  45. Kumar S., Kim Y.J., Koo B.H., Lee C.G. // J. Nanosci. Nanotechnol. 2010. V. 10. № 11. P. 7204.
  46. Sundaresan A., Bhargavi R., Rangarajan N., Siddesh U., Rao C.N.R. // Phys. Rev. B 2006. V. 74. № 16. Art. 161306(R).
  47. Khakhal H.R., Kumar S., Dolia S.N., Dalela B., Vats V.S., Hashmi S.Z., Alvi P.A., Kumar S., Dalela S. // J. Alloys Compd. 2020. V. 844. Art. 156079.
  48. Tontini G., Koch A. Jr., Schmachtenberg V.A.V., Binder C., Klein A.N., Drago V. // Mater. Res. Bull. 2015. V. 61. P. 177.
  49. Kamble R.B., Varade V., Ramesh K.P., Prasad V. // AIP Adv. 2015. V. 5. № 1. Art. 017119.
  50. Han D., Wang J., Luo H. // J. Magn. Magn. Mater. 1994. V. 136. № 1–2. P. 176.
  51. Ishizaki T., Yatsugi K., Akedo K. // Nanomaterials. 2016. V. 6. № 9. P. 172.
  52. Ávila-Crisóstomo C., Pal U., Pérez-Rodríguez F., Rodríguez-González V. // J. Magn. Magn. Mater. 2020. V. 514. Art. 167102.
  53. Dippong T., Cadar O., Deac I.G., Levei E.A., Borodi G. // J. Alloys Compd. 2020. V. 828. Art. 154409.
  54. Basma H., Rahal H.T., Al-Mokdad F., Romie M., Awad R. // Mater. Res. Express 2019. V. 6. № 7. Art. 075001.
  55. Roy S., Dubenko I., Edorh D., Ali N., Los A.E., Starodubov A.V., Takeuchi A.Y., Gschneidner K.A., Pecharsky V.K. // J. Appl. Phys. 2004. V. 96. № 2. P. 1202.
  56. Du Y. W., Xu M., Wu J., Liu X.D., Zhang Y.H. // J. Appl. Phys. 1991. V. 70. № 10. P. 5903.
  57. Leslie-Pelecky D., Rieke R. // Chem. Mater. 1996. V. 8. № 8. P. 1770.
  58. Грабченко М.В., Дорофеева Н.В., Лапин И.Н., La Parola V., Liotta L.F., Водянкина О.В. // Кинетика и Катализ. 2021. Т. 62. № 6. С. 718.
  59. Fidalgo B., Arenillas A., Menéndez J.A. // Fuel. 2010. V. 89. № 12. P. 4002.
  60. Naeem M.A., Al-Fatesh A.S., Khan W.U., Fakeeha A.H., Al-Zahrani A.A. // Int. J. Chem. Appl. 2013. V. 4. № 5. P. 315.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).