Features of propane dehydrogenation on Mn/γ-Al2O3 catalysts produced by various methods

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The physicochemical and catalytic properties of Mn-containing catalysts based on γ-Al2O3, obtained by various methods, were studied in the process of converting propane into olefin hydrocarbons. The dependence of the activity and selectivity of the catalytic systems on the localization of the introduced manganese and their acidic properties was shown. It was found that the greatest amount of olefin hydrocarbons during the conversion of propane is formed on the Mn-containing catalyst, into which manganese was introduced by the impregnation method. The nature and amount of carbon deposits formed on the studied catalysts during the propane conversion process were established. It was shown that the coke deposits formed on the Mn-containing catalysts have a virtually uniform structure and are characterized by a low degree of condensation, which allows for their relatively easy oxidative regeneration.

About the authors

A. A Vosmerikov

Institute of Petroleum Chemistry SB RAS

Email: antonvosmerikov@gmail.com
Tomsk, Russia

A. A Stepanov

Institute of Petroleum Chemistry SB RAS

Tomsk, Russia

L. N Vosmerikova

Institute of Petroleum Chemistry SB RAS

Tomsk, Russia

References

  1. Loiland J.A., Zhao Z., Patel A., Hazin P. // Ind. Eng. Chem. Res. 2019. V. 58. № 6. P. 2170.
  2. Sattler J.J.H.B., Ruiz-Martinez J., Santillan-Jimenez E., Weckhuysen B.M. // Chem. Rev. 2014. V. 114. № 20. P. 10613.
  3. Chen F., Hao J., Yu Y., Cheng D.-G., Zhan X. // Micropor. Mesopor. Mater. 2022. V. 330. Art. 111575.
  4. Sattler J.J.H.B., Ruiz-Martinez J., Santillan-Jimenez E., Weckhuysen B.M. // Angew. Chem. Int. Ed. 2014. V. 53. P. 9251.
  5. Docherty S.R., Rochlitz L., Payard P.A., Coperet C. // Chem. Soc. Rev. 2021. V. 50. № 9. P. 5806.
  6. Nawaz Z. // Rev. Chem. Eng. 2015. V. 31. № 5. P. 413.
  7. Wang H.-Z., Zhao Z.-J., Yang W., Zhang L., Gong J. // Ind. Eng. Chem. Res. 2018. V. 57. № 26. P. 8647.
  8. Брагинский О.Б. Мировая нефтехимическая промышленность. Москва: Наука, 2003.
  9. Крылов О.В. Гетерогенный катализ. Москва: ИКЦ Академкнига, 2004.
  10. Tan Y., Zeng L., Yuan X., Gong J. // ChemCatChem. 2016. V. 8. № 3. P. 569.
  11. Feng B., Wei Y.-C., Song W.-Y., Xu C.-M. // Chin. J. Catal. 2022. V. 19. № 2. P. 819.
  12. Zubkov A.V., Bugrova T.A., Evdokimova E.V., Mamontov G.V. // Kinet. Catal. 2025. V. 66. P. 65.
  13. Sun M., Sixiang Z., Chenchen W., Haoyu W., ZhongYong Y. // Mol. Catal. 2024. V. 558. Art. 114029.
  14. Sheng W., Yuxin F., Lin Y., Peng W., Jiayue X., Dan Y., Xupeng Z., Yu T., Yihu D., Yanhui Y. // Appl. Catal. B: Environ. 2025. V. 371. Art. 125233.
  15. Sharma L., Jiang X., Wu Z., Baltrus J., Rangarajan S., Baltrusaitis J. // J. Catal. 2021. № 394. P. 142.
  16. Xiao H., Sun H., Qi F., Wang C., Li X. // Catal. Sci. Technol. 2016. V. 6. № 13. P. 4766.
  17. Cholewinski M., Dixit M., Mpourmpakis G. // ACS Omega. 2018. № 3. P. 18242.
  18. Joubert J., Fleurat-Lessard P., Delbecq F., Sautet P. // J. Phys. Chem. B. 2006. № 110. P. 7392.
  19. Dixit M., Kostetskyy P., Mpourmpakis G. // ACS Catal. 2018. № 8. P. 11570.
  20. Vosmerikov A.A., Stepanov A.A., Vosmerikova L.N., Gerasimov E.Y., Vosmerikov A.V. // Russ. J. Phys. Chem. 2025. V. 99. № 1. P. 44.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).