NI-CONTAINING GLASS-FIBER CATALYST FOR HYDROGENOLYSIS OF LIGHT PARAFFINS: RELATIONSHIP BETWEEN ACTIVITY AND CATALYST PREPARATION CONDITIONS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This study evaluates the efficiency of nickel-containing structured glass-fiber catalysts prepared by two different methods for the hydrogenolysis of saturated hydrocarbons, including propane, butane, and pentane. he dependence of the crystallite size and dispersion of the catalyst’s active component (AC) on the preparation method and reduction temperature conditions was established. Impulse surface thermosynthesis (ISTS) facilitates the most uniform distribution of the AC over the support surface and its higher dispersion. The crystallite size is primarily determined by the reduction temperature of the AC. The GFC containing ~10 wt % nickel, prepared by the ISTS method and reduced at the minimum temperature of 300°C, demonstrated the highest catalytic activity. Compared to a commercial nickel catalyst, the Ni/GFC samples exhibited tens of times higher specific catalytic activity per unit mass of nickel. Nickel-containing GFCs synthesized by the ISTS method are highly promising for use in advanced catalytic technologies for paraffin hydrogenolysis, particularly for processing gas condensate into methane.

About the authors

M. Sebaa

Tyumen State University

Email: m.sibaa@utmn.ru
address, Tyumen, 625003 Russia

V. B. Kharitontsev

Tyumen State University

address, Tyumen, 625003 Russia

N. A. Shulaev

Tyumen State University

address, Tyumen, 625003 Russia

E. A. Tissen

Tyumen State University

address, Tyumen, 625003 Russia

A. N. Zagoruyko

Tyumen State University; Boreskov Institute of Catalysis SB RAS

address, Tyumen, 625003 Russia; address, Novosibirsk, 630090 Russia

A. V. Elyishev

Tyumen State University

address, Tyumen, 625003 Russia

References

  1. Итоги работы Минэнерго России и основные результаты функционирования топливно-энергетического комплекса в 2020 году. Задачи на 2021 год и среднесрочную перспективу. Апрель 2021. С. 70.
  2. Результаты деятельности Минэнерго России и функционирования отраслей ТЭК в 2022 году. Задачи на 2023 год и среднесрочную перспективу. 2023. 26 c.
  3. Выбросы метана в нефтегазовой отрасли. Аналитический центр при правительстве РФ. Энергетический бюллетень. Июль 2020. С. 28.
  4. Chen L., Zhu Y., Meyer L.C., Hale L.V., Le T.T., Karkamkar A., Lercher J.A., Gutiérrez O.Y., Szanyi J. Effect of reaction conditions on the hydrogenolysis of polypropylene and polyethylene into gas and liquid alkanes // React. Chem. Eng. 2022. V. 7. P. 844. https://doi.org/10.1039/D1RE00431J
  5. Zhao Z., Li Z., Zhang X., Li T., Li Y., Chen X., Wang K. Catalytic hydrogenolysis of plastic to liquid hydrocarbons over a nickel-based catalyst // Environ. Pollut. 2022. V. 313. Art. 120154. https://doi.org/10.1016/j.envpol.2022.120154
  6. Ginette L., Stanislas P., Mohamed P., Mohamed K. Hydrogenolysis of saturated hydrocarbons: V. Influence of hydrocarbon structures on the activity and selectivity of Ni on silica // J. Catal. 1986. V. 99. № 1. P. 11. https://doi.org/10.1016/0021-9517(86)90192-2
  7. Guczi L., Gudkov B.S., Tetenyi P. The mechanism of catalytic hydrogenolysis of ethane over nickel // J. Catal. 1972. V. 24. 2. P. 187. https://doi.org/10.1016/0021-9517(72)90061-9
  8. Курочкин А.К., Мотин Н.В. Кавитационная конверсия мазута газовых конденсатов в дизельно-бензиновые дистилляты // Сфера. Нефть и газ. 2018. № 2. С. 64.
  9. Патент РФ № 2620434 С1, 2017.
  10. Загоруйко А.Н. Структурированные каталитические системы на основе стекловолокнистых катализаторов: монография / А.Н. Загоруйко, С.А. Лопатин. Новосибирск: Новосибирский государственный технический университет, 2018. С. 207.
  11. Бальжинимаев Б.С., Сукнёв А.П., Гуляева Ю.К., Ковалев Е.В. Силикатные стекловолокнистые катализаторы: от науки к технологиям // Катализ в промышленности. 2015. Т. 15. № 4. С. 22.
  12. Balzhinimaev B.S., Paukshtis E.A., Vanag S.V., Suknev A.P., Zagoruiko A.N. Glass-fiber catalysts: Novel oxidation catalysts, catalytic technologies for environmental protection // Catal. Today. 2010. V. 151. P. 195. https://doi.org/10.1016/j.cattod.2010.01.011
  13. Balzhinimaev B.S., Simonova L.G., Barelko V.V., Toktarev A.V., Zaikovskii V.I., Chumachenko V.A. Pt-containing catalysts on a base of woven glass fiber support: a new alternative for traditional vanadium catalysts in SO2 oxidation process // Chem. Eng. J. 2003. V. 91. № 2–3. P. 175. https://doi.org/10.1016/S1385-8947(02)00151-1
  14. Микенин П.Е., Цырульников П.Г., Котолевич Ю.С., Загоруйко А.Н. Ванадийоксидные катализаторы на основе структурированных микроволокнистых носителей для селективного окисления сероводорода // Катализ в промышленности. 2015. № 1. С. 65.
  15. Zazhigalov S., Elyshev A., Lopatin S., Larina T., Cherepanova S., Mikenin P., Pisarev D., Baranov D., Zagoruiko A. Copper-chromite glass fiber catalyst and its performance in the test reaction of deep oxidation of toluene in air // Reac. Kinet. Mech. Catal. 2017. V. 120. P. 247. https://doi.org/10.1007/s11144-016-1089-3
  16. Mikenin P., Zazhigalov S., Elyshev A., Lopatin S., Larina T., Cherepanova S., Pisarev D., Baranov D., Zagoruiko A. Iron oxide catalyst at the modified glass fiber support for selective oxidation of H2S // Catal. Commun. 2016. V. 87. P. 36. https://doi.org/10.1016/j.catcom.2016.08.038
  17. Popov M.V., Zazhigalov S.V., Larina T.V., Cherepanova S.V., Bannov A.G., Lopatin S.A., Zagoruiko A.N. Glass fiber supports modified by layers of silica and carbon nanofibers // Catal. Sustain. Energy. 2017. V. 4. P. 1. https://doi.org/10.1515/cse-2017-0001
  18. Aldashukurova G.B., Mironenko A.V., Mansurov Z.A., Shikina N.V., Yashnik S.A., Kuznetsov V.V., Ismagilov Z.R. Synthesis gas production on glass cloth catalysts modified by Ni and Co oxides // J. Energy Chem. 2013. V. 22. № 5. P. 811. https://doi.org/10.1016/S2095-4956(13)60108-4
  19. Britcher L.G., Matisons J.G. E-glass fiber supported hydrosilation catalysts // ACS Symp. Ser. 2000. V. 760. P. 127. https://doi.org/10.1021/bk-2000-0760.ch008
  20. Li L., Diao Y., Liu X. Ce-Mn mixed oxides supported on glass-fiber for low-temperature selective catalytic reduction of NO with NH3 // J. Rare Earths. 2014. V. 32. № 5. P. 409. https://doi.org/10.1016/S1002-0721(14)60086-7
  21. Shalygin A., Paukshtis E., Kovalyov E., Balzhinimaev B. Light olefins synthesis from C1–C2 paraffins via oxychlorination processes // Front. Chem. Sci. Eng. 2013. V. 7. № 3. P. 279. https://doi.org/10.1007/s11705-013-1338-1
  22. Debeche T., Marmet C., Kiwi-Minsker L., Renken A., Juillerat M.A. Structured fiber supports for gas phase biocatalysis // Enzyme Microbial Technol. 2005. V. 36. № 7. P. 911. https://doi.org/10.1016/j.enzmictec.2005.01.012
  23. Патент РФ №66 974, 2007.
  24. Larina T.V., Cherepanova S.V., Rudina N.A., Kolesov B.A., Zagoruiko A.N. Characterization of vanadia catalysts on structured micro-fibrous glass supports for selective oxidation of hydrogen sulfide // Catal. Sustain. Energy. 2016. V. 2. № 1. P. 87. https://doi.org/10.1515/cse-2015-0007
  25. Mironenko O.O., Shitova N.B., Kotolevich Y.S. Sharafutdinov M.R., Struikhina N.O., Smirnova N.S., Kochubey D.I., Protasova O.V., Trenikhin M.V., Stonkus O.A., Zaikovskii V.I., Goncharov V. B., Tsyrul’nikov P.G. Pd/Fiber glass and Pd/5% γ-Al2O3/Fiber glass catalysts by surface self-propagating thermal synthesis // Int. J. Self-Propag. High-Temp. Synth. 2012. V. 21. P. 139. https://doi.org/10.3103/S1061386212020082
  26. Afonasenko T.N., Tsyrul’nikov P.G., Gulyaeva T.I., Leont’eva N.N., Smirnova N.S., Kochubei D.I., Mironenko O.O., Svintsitskii D.A., Boronin A.I., Kotolevich Yu.S., Suprun E.A., Salanov A.N. (CuO-CeO2)/glass cloth catalysts for selective CO oxidation in the presence of H2: The effect of the nature of the fuel component used in their surface self-propagating high-temperature synthesis on their properties // Kinet. Catal. 2013. V. 54. P. 59. https://doi.org/10.1134/S0023158412060018
  27. Lopatin S.A., Tsyrul’nikov P.G., Kotolevich Y.S., Mikenin P.E., Pisarev D.A., Zagoruiko A.N. Structured woven glass-fiber IC-12-S111 catalyst for the deep oxidation of organic compounds // Catal. Ind. 2015. V. 7. P. 329. https://doi.org/10.1134/S2070050415040121
  28. Kotolevich Y.S., Khramov E.V., Mironenko O.O., Zubavichus Ya.V., Murzin V.Yu., Frey D.I., Metelev S.E., Shitova N.B., Tsyrulnikov P.G. Supported palladium catalysts prepared by surface self-propagating thermal synthesis // Int. J. Self-Propag. High-Temp. Synth. 2014. V. 23. P. 9. https://doi.org/10.3103/S1061386214010075
  29. Завьялова У.Ф., Третьяков В.Ф., Бурдейная Т.Н., Лунин В.В., Шитова Н.Б., Рыжова Н.Д., Шмаков А.Н., Низовский А.И., Цырульников П.Г. Самораспространяющийся синтез нанесенных оксидных катализаторов окисления СО и углеводородов // Кинетика и катализ. 2005. Т. 46. № 5. С. 795.
  30. Flaherty D.W., Hibbitts D.D., Gürbüz E.I., Iglesia, E. Theoretical and kinetic assessment of the mechanism of ethane hydrogenolysis on metal surfaces saturated with chemisorbed hydrogen // J. Catal. 2014. V. 311. P. 350. https://doi.org/10.1016/j.jcat.2013.11.026
  31. Flaherty D.W., Iglesia E. Transition-state enthalpy and entropy effects on reactivity and selectivity in hydrogenolysis of n-alkanes // J. Am. Chem. Soc. 2013. V. 135. № 49. P. 18586.‏ https://doi.org/10.1021/ja4093743

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).