XPS STUDY OF DIFFERENCES IN STABILITY OF MWCNTS AND N-MWCNTS AS A SUPPORT FOR MODEL SILVER CATALYST FOR ETHYLENE EPOXIDATION

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The effect of preparation conditions on the stability of N-MWCNT samples prepared under oxygen-free conditions by the method of catalytic gas-phase decomposition of ethylene at 680°C on the Fe2Co/Al2O3 catalyst in the presence of NH3, with respect to atmospheric oxygen was studied by the XPS method. The analysis of the oxygen and nitrogen contents in the N-MWCNT composition, as well as the shape of the C1s XPS line after sample removal from the reactor in the air depending on the volume fraction of ammonia in the reaction mixture, as well as after treatment in nitric acid indicates that at low NH3 contents (2–4 vol. %) the incorporation of nitrogen into the structure of nanotubes leads to an increase in the structure ordering / a decrease in disorder, as a result, the oxygen content in these samples is minimal. Comparison of the supported catalysts Ag/MWCNT-0n and Ag/N-MWCNT-4n shows that the introduction of nitrogen during the support synthesis allows not only to decrease the oxygen content in carbon nanotubes, but also to increase the oxidation stability of both the support itself and the silver catalyst based on it.

Sobre autores

A. Ananina

Boreskov Institute of Catalysis SB RAS

ave. Acad. Lavrentieva, 5, Novosibirsk, 630090 Russia

A. Nartova

Boreskov Institute of Catalysis SB RAS

Email: nartova@catalysis.ru
ave. Acad. Lavrentieva, 5, Novosibirsk, 630090 Russia

R. Kvon

Boreskov Institute of Catalysis SB RAS

ave. Acad. Lavrentieva, 5, Novosibirsk, 630090 Russia

A. Dmitrachkov

Boreskov Institute of Catalysis SB RAS

ave. Acad. Lavrentieva, 5, Novosibirsk, 630090 Russia

M. Kazakova

Boreskov Institute of Catalysis SB RAS

ave. Acad. Lavrentieva, 5, Novosibirsk, 630090 Russia

G. Golubtsov

Boreskov Institute of Catalysis SB RAS

ave. Acad. Lavrentieva, 5, Novosibirsk, 630090 Russia

V. Bukhtiyarov

Boreskov Institute of Catalysis SB RAS

ave. Acad. Lavrentieva, 5, Novosibirsk, 630090 Russia

Bibliografia

  1. Демидов Д.В., Просвирин И.П., Сорокин А.М., Роша Т., Кноп-Герике А., Бухтияров В.И. // Кинетика и катализ. 2011. Т. 52. № 6. С. 877. https://doi.org/10.1134/S0453881119060133
  2. Alzahrani H.А., Bravo-Suarez J.J. // J. Catal. 2023. V. 418. P. 225. https://doi.org/10.1016/j.jcat.2023.01.016
  3. Huš M., Grilc M., Teržan J., Gyergyek S., Likozar B., Hellman A. // Angew. Chem. 2023. V. 62. P. 1. https://doi.org/10.1002/anie.202305804
  4. Pu T., Tian H., Ford M.E., Rangarajan S., Wachs I.E. // ACS Catal. 2019. V. 9. P. 10727.
  5. Carbonio E.A., Rocha T.C.R., Klyushin A.Y., Píš I., Magnano E., Nappini S., Jones T.E. // Chem. Sci. 2018. V. 9. P. 990. https://doi.org/10.1039/C7SC04728B
  6. Bukhtiyarov V.I., Carley A.F., Dollard L.A., Roberts M.W. // Surf. Sci. 1997. V. 381. P. 605. https://doi.org/10.1016/S0039-6028(97)00057-5
  7. Bukhtiyarov V.I., Kaichev V.V., Prosvirin I.P. // J. Chem. Phys. 1999. V. 111. P. 2169‒2175. https://doi.org/10.1063/1.479488
  8. Andryushechkin B.V., Loginov B.A. // Phys. Wave Phenom. 2023. V. 31. P. 67. https://doi.org/10.3103/S1541308X23020024
  9. Andryushechkin B.V., Shevlyuga V.M., Pavlova T.V., Zhidomirov G.M., Eltsov K.N.J. // Chem. Phys. 2018. V. 148. P. 244702. https://doi.org/10.1063/1.5037169
  10. Andryushechkin B.V., Pavlova T.V., Shevlyuga V.M. // Phys. Chem. Chem. Phys. 2024. V. 26. P. 1322‒1327. https://doi.org/10.1039/D3CP04962K
  11. Andryushechkin B.V., Shevlyuga V.M., Pavlova T.V., Zhidomirov G.M. // Phys. Chem. 2018. V. 122. P. 28862. https://doi.org/10.1021/acs.jpcc.8b10443
  12. Goncharova S.N., Bal’zhinimaev B.S., Tsybulya S.V., Zaikovskii V.I., Danilyuk A.F. // Surf. Sci. Catal. 1995. V. 91. P. 915. https://doi.org/10.1016/S0167-2991(06)81834-3
  13. Бухтияров А.В, Нартова А.В., Квон Р.И., Просвирин И.П., Сорокин А.М., Бухтияров В.И. // Химия в интересах устойчивого развития. 2014. Т. 22. С. 591.
  14. Nartova A.V., Kvon R.I. // Chem. Sustain. Dev. 2003. V. 11. P. 209.
  15. Ramli Z.A.C., Kamarudin S.K. // Nanoscale Res. Lett. 2018. V. 13. P. 410. https://doi.org/10.1186/s11671-018-2799-4
  16. Podyacheva O.Y., Korobova A.N., Yashnik S.A., Svintsitskiy D.A., Stonkus O.A, Sobolev V.I., Parmon V.N. // Diam. Relat. Mater. 2023. V. 134. №. 109771. P. 1. https://doi.org/10.1016/j.diamond.2023.109771
  17. Суслова Е.В., Савилов С.В., Егоров А.В., Лунин В.В. // Кинетика и катализ. 2019. Т. 60. С. 108. https://doi.org/10.1134/S0453881119010131
  18. Wood K.N., O’Hayre R., Pylypenko S. // Energy Environ. Sci. 2014. V. 7. P. 1212. https://doi.org/10.1039/C3EE44078H
  19. Shi W., Wu K.-H., Xu J., Zhang Q., Zhang B., Su D.S. // Chem. Mater. 2017. V. 29. P. 8670. https://doi.org/10.1021/acs.chemmater.7b02658
  20. Dropp R., Hammer P., Carvalho A.C., dos Santos M.C., Alvarez F.J. // Non-Cryst. Solids. 2002. V. 299. P. 874. https://doi.org/10.1016/S0022-3093(01)01114-0
  21. Susi T., Pichler T., Ayala P. // Beilstein J. Nanotechnol. 2015. V. 6. P. 177. https://doi.org/10.3762/bjnano.6.17
  22. Serp P., Machado B. // RSC Catalysis Series No. 23. The Royal Society of Chemistry, UK. 2015. P. 1.
  23. Biniak S., Szymański G., Siedlewski J., Świątkowski A. // Carbon. 1997. V. 35. P. 1799. https://doi.org/10.1016/S0008-6223(97)00096-1
  24. Болотов В.В, Князев Е.В., Корусенко П.М., Несов С.Н., Сачков В.А. // Физика твердого тела. 2020. Т. 62. С. 1925. https://doi.org/10.21883/FTT.2020.11.50072.125
  25. Kazakova M.A., Koul A., Golubtsov G.V., Selyutin A.G., Ishchenko A.V., Kvon R.I., Morale D.M. // ChemElectroChem. 2021. V. 8. P. 2803. https://doi.org/10.1002/celc.202100556
  26. Golubtsov G.V., Kazakova M.A., Selyutin A.G., Ishchenko A.V., Kuznetsov V.L. // J. Struct. Chem. 2020. V. 61. P. 640. https://doi.org/10.1134/S0022476620040186
  27. Matveev A.V., Nartova A.V., Sankova N.N., Okunev A.G. // Microsc. Res. Tech. 2024. V. 87. P. 991. https://doi.org/10.1002/jemt.24480
  28. The Handbook of Homogeneous Hydrogenation, J.G. de Vries, C.J. Elsevier, Eds, Wiley-VCH: Weinheim, 2007. 261 p.
  29. Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, D. Briggs, J.T. Grant, Eds. IMPublications and SurfaceSpectra Limited, Cromwell Press, Trowbridge, UK, 2003. 900 p.
  30. Using XPS PEAK Version 4.1. http://sun.phy.cuhk.edu.hk/~surface/XPSPEAK/XPSPEAKusersguide.doc.
  31. Lea A.S., Swanson K.R., Haack J.N., Castle J.E., Tougaard S., Baer D.R. // Surf. Interface Anal. 2010. V. 42. P. 1061. https://doi.org/10.1002/sia.3304
  32. Suh I.-K., Ohta H., Waseda Y.J. // Mater. Sci. 1988. V. 23. P. 757. https://doi.org/10.1007/BF01174717
  33. Нартова А.В., Ананьина А.А., Семиколенов С.В., Дмитрачков А.М., Квон Р.И., Бухтияров В.И. // Кинетика и Катализ. 2023. Т. 64. C. 1. https://doi.org/10.31857/S0453881123040093
  34. Ayiania M., Smith M., Hensley A.J.R., Scudiero L., McEwen J.-S., Garcia-Perez. // Carbon. 2020. V. 162. P. 528. https://doi.org/10.1016/j.carbon.2020.02.065
  35. Inagaki M., Toyoda M., Soneda Y., Morishita T. // Carbon. 2018. V. 132. P. 104. https://doi.org/10.1016/j.carbon.2018.02.024
  36. Dementjev A.P., de Graaf A., van de Sanden M.C.M., Maslakov K.I., Naumkin A.V., Serov A.A. // Diam. Relat. Mater. 2000. V. 9. P. 1904. https://doi.org/10.1016/S0925-9635(00)00345-9
  37. Bulusheva L.G., Okotrub A.V., Fedoseeva Yu.V., Kurenya A.G., Asanov I.P., Vilkov O.Y., Koo A.A., Grobert N. // Phys. Chem. Chem. Phys. 2015. V. 17. P. 23741. https://doi.org/10.1039/C5CP01981H
  38. Reyes-Reyes M., Grobert N., Kamalakaran R., Seeger T., Golberg D., Ruhle M., Bando Y., Terrones H., Terrones M. // Chem. Phys. Lett. 2004. V. 396. P. 167. https://doi.org/10.1016/j.cplett.2004.07.125
  39. Zhou J., Wang J., Liu H., Banis M.N., Sun X., Sham T.-K. // J. Phys. Chem. Lett. 2010. V. 1. P. 1709. https://doi.org/10.1021/jz100376v
  40. Liu H., Zhang Y., Li R., Sun X., De´silets S., Abou-Rachid H., Jaidann M., Lussier L.-S. // Carbon. 2010. V. 48. P. 1498. https://doi.org/10.1016/j.carbon.2009.12.045
  41. Lobia E.V., Kuznetsova V.R., Makarova A.A., Okotrub A.V., Bulusheva L.G. // Mat. Chem. Phys. 2020. V. 255. № 123563. P. 1. https://doi.org/10.1016/j.matchemphys.2020.123563
  42. Arkhipova E.A., Ivanov A.S., Strokova N.E., Chernyak S.A., Shumyantsev A.V., Maslakov K.I., Savilov S.V., Lunin V.V. // Carbon. 2017. V. 125. P. 20. http://dx.doi.org/10.1016/j.carbon.2017.09.013
  43. Choi H.C., Park J., Kim B.J. // Phys. Chem. 2005. V. 109. P. 4333. https://doi.org/10.1021/jp0453109
  44. Choi H.C., Bae S.Y., Jang W.-S., Park J., Song H.J., Shin H.-J., Jung H., Ahn J.-P. J. // Phys. Chem. 2005. V. 109. P. 1683. https://doi.org/10.1021/jp046098b
  45. Shah D., Bahr S., Dietrich P., Meyer M., Thiße A., Linford M.R. // Surf. Sci. Spectra. 2019. V. 26. P. 014023. https://doi.org/10.1116/1.5110301
  46. Tillborg H., Nilsson A., Hernnas B., Martensson N., Palmer R.E. // Surf. Sci. 1993. V. 295. P. 1. https://doi.org/10.1016/0039-6028(93)90180-R
  47. Folkesson B., Sundberg P. // Spectroscopy Lett. 1987. V. 20. № 3. P. 193. https://doi.org/10.1080/00387018708081542
  48. Lau V.W., Lu C.-F., Wijaya N.P., Lutan M. // Chem. Mater. 2024. V. 36. P. 9762. https://doi.org/10.1021/acs.chemmater.4c01902
  49. Chen X., Wang X., Fang D. // Fuller. Nanotub. Carbon Nanostruct. 2020. V. 28. № 12. P. 1048. https://doi.org/10.1080/1536383X.2020.1794851
  50. Nartova A.V., Kvon R.I., Makarov E.M., Bukhtiyarov V.I. // Mendeleev Commun. 2018. V. 28. № 6. P. 601. https://doi.org/10.1016/j.mencom.2018.11.012

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).