Ceria-supported platinum water gas shift catalysts: composition, structure, reaction mechanism

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Water gas shift is an industrially important reaction included in the process chain for producing pure hydrogen from methane or other hydrocarbon feedstocks. The relevance of the process has increased with the invention of modern fuel cells, which require high-purity hydrogen for power. The need to develop hydrogen infrastructure and, at the same time, the difficulties of transporting this gas have stimulated the search for catalysts that are convenient and effective for hydrogen production and purification in compact mobile units. For water gas shift reaction, noble metal catalysts are considered as possible options. This article presents a review of studies devoted to platinum catalysts supported on ceria and its doped forms for the water gas shift reaction. The influence of the oxide support composition on the catalytic properties of such systems is considered, variants of the reaction mechanism and active site structure are presented, and the results of studies of bimetallic Pt-containing and structured catalysts are summarized.

About the authors

A. M. Gorlova

Boreskov Institute of Catalysis SB RAS

Email: gorlova@catalysis.ru
Acad. Lavrentieva ave. 5, Novosibirsk, 630090 Russia

D. I. Potemkin

Boreskov Institute of Catalysis SB RAS

Acad. Lavrentieva ave. 5, Novosibirsk, 630090 Russia

References

  1. Evro S., Oni B.A., Tomomewo O.S. // Int. J. Hydrogen Energy. 2024. V. 78. P. 1449.
  2. Kamran M., Turzyński M. // J. Energy Storage. 2024. V. 96. Art. 112601.
  3. Mitrofanov S.V., Kiryanova N.G., Gorlova A.M. // Energies. 2021. V. 14. № 18. Art. 5946.
  4. Sadeq A.M., Homod R.Z., Hussein A.K., Togun H., Mahmoodi A., Isleem H.F., Patil A.R., Moghaddam A.H. // Sci. Total Environ. 2024. V. 939. Art. 173622.
  5. Park E.D., Lee D., Lee H.C. // Catal. Today. 2009. V. 139. № 4. P. 280.
  6. Kourougianni F., Arsalis A., Olympios A.V., Yiasoumas G., Konstantinou C., Papanastasiou P., Georghiou G.E. // Renew. Energy. 2024. V. 231. Art. 120911.
  7. Singh K., Verma T.N., Dwivedi G., Shukla A.K. // Process Saf. Environ. Prot. 2024. V. 190. P. 1067.
  8. Le Valley T.L., Richard A.R., Fan M. // Int. J. Hydrogen Energy. 2014. V. 39. № 30. P. 16983.
  9. AlHumaidan F.S., Absi Halabi M., Rana M.S., Vinoba M. // Energy Convers. Manag. 2023. V. 283. Art. 116840.
  10. Rouwenhorst K.H.R., Engelmann Y., Van ‘T Veer K., Postma R.S., Bogaerts A., Lefferts L. // Green Chem. 2020. V. 22. № 19. P. 6258.
  11. Ratnasamy C., Wagner J. // Catal. Rev. Sci. Eng. 2009. V. 51. № 3. P. 325.
  12. Baraj E., Ciahotný K., Hlinčík T. // Fuel. 2021. V. 288. Art. 119817.
  13. Pal D.B., Chand R., Upadhyay S.N., Mishra P.K. // Renew. Sustain. Energy Rev. 2018. V. 93. P. 549.
  14. Burns D.T., Piccardi G., Sabbatini L. // Microchimica Acta. 2008. V. 160. № 1–2. P. 57.
  15. Reddy G.K., Smirniotis P.G. Introduction About WGS Reaction / Water Gas Shift Reaction: Research Developments and Applications. Elsevier B.V., 2015. P. 1.
  16. Shilov V., Potemkin D., Rogozhnikov V., Snytnikov P. // Materials. 2023. V. 16. № 2. Art. 599.
  17. Lee Y.L., Kim K.J., Hong G.R., Roh H.S. // Chem. Eng. J. 2023. V. 458. Art. 141422.
  18. Печенкин А.А., Бадмаев С.Д., Беляев В.Д., Паукштис Е.А., Стонкус О.А., Собянин В.А. // Кинетика и катализ. 2017. Т. 58. № 5. С. 589.
  19. Zhang H., Sun Z., Hu Y.H. // Renew. Sustain. Energy Rev. 2021. V. 149. Art. 111330.
  20. Rönsch S., Schneider J., Matthischke S., Schlüter M., Götz M., Lefebvre J., Prabhakaran P., Bajohr S. // Fuel. 2016. V. 166. P. 276.
  21. Reddy G.K., Smirniotis P.G. Low-Temperature WGS Reaction / Water Gas Shift Reaction: Research Developments and Applications. Elsevier B.V., 2015. P. 47.
  22. Баронская Н.А., Минюкова Т.П., Хасин А.А., Юрьева Т.М., Пармон В.Н. // Успехи химии. 2010. Т. 79. № 11. С. 1112.
  23. Navarro R.M., Peña M.A., Fierro J.L.G. // Chem. Rev. 2007. V. 107. № 10. P. 3952.
  24. Xue E., O’Keeffe M., Ross J.R.H. // Catal. Today. 1996. V. 30. № 1–3. P. 107.
  25. Chen W.H., Chen C.Y. // Appl. Energy. 2020. V. 258. Art. 114078.
  26. Devaiah D., Reddy L.H., Park S.E., Reddy B.M. // Catal. Rev. Sci. Eng. 2018. V. 60. № 2. P. 177.
  27. Rodriguez J.A., Grinter D.C., Liu Z., Palomino R.M., Senanayake S.D. // Chem. Soc. Rev. 2017. V. 46. № 7. P. 1824.
  28. Salaev M.A., Salaeva A.A., Kharlamova T.S., Mamontov G.V. // Appl. Catal. B: Environ. 2021. V. 295. Art. 120286.
  29. Kim Y.T., Park E.D., Lee H.C., Lee D., Lee K.H. // Appl. Catal. B: Environ. 2009. V. 90. № 1. P. 45.
  30. Panagiotopoulou P., Kondarides D.I. // Catal. Today. 2006. V. 112. № 1. P. 49.
  31. Panagiotopoulou P., Kondarides D.I. // J. Catal. 2004. V. 225. № 2. P. 327.
  32. Горлова А.М., Симонов П.А., Стонкус О.А., Пахарукова В.П., Снытников П.В., Потемкин Д.И. // Кинетика и катализ. 2021. Т. 62. № 6. С. 773.
  33. Mendelovici L., Steinberg M. // J. Catal. 1985. V. 96. № 1. P. 285.
  34. Palma V., Ruocco C., Cortese M., Renda S., Meloni E., Festa G., Martino M. // Metals (Basel). 2020. V. 10. № 7. P. 1.
  35. Jacobs G., Chenu E., Patterson P.M., Williams L., Sparks D., Thomas G., Davis B.H. // Appl. Catal. A: Gen. 2004. V. 258. № 2. P. 203.
  36. Jacobs G., Williams L., Graham U., Thomas G.A., Sparks D.E., Davis B.H. // Appl. Catal. A: Gen. 2003. V. 252. № 1. P. 107.
  37. Reddy G.K., Smirniotis P.G. Mechanism and Kinetics of the WGS Reaction / Water Gas Shift Reaction: Research Developments and Applications. Elsevier B.V., 2015. P. 225.
  38. Shido T., Iwasawa Y. // J. Catal. 1992. V. 136. № 2. P. 493.
  39. Azzam K.G., Babich I.V., Seshan K., Lefferts L. // J. Catal. 2007. V. 251. № 1. P. 153.
  40. Vignatti C.I., Avila M.S., Apesteguía C.R., Garetto T.F. // Catal. Today. 2011. V. 171. № 1. P. 297.
  41. Vecchietti J., Bonivardi A., Xu W., Stacchiola D., Delgado J.J., Calatayud M., Collins S.E. // ACS Catal. 2014. V. 4. № 6. P. 2088.
  42. Kalamaras C.M., Dionysiou D.D., Efstathiou A.M. // ACS Catal. 2012. V. 2. № 12. P. 2729.
  43. Kalamaras C.M., Americanou S., Efstathiou A.M. // J. Catal. 2011. V. 279. № 2. P. 287.
  44. Bunluesin T., Gorte R.J., Graham G.W. // Appl. Catal. B: Environ. 1998. V. 15. № 1–2. P. 107.
  45. Germani G., Schuurman Y. // AlChE Journal. 2006. V. 52. № 5. P. 1806.
  46. Kalamaras C.M., Petallidou K.C., Efstathiou A.M. // Appl. Catal. B: Envirob. 2013. V. 136–137. P. 225.
  47. Aranifard S., Ammal S.C., Heyden A. // J. Catal. 2014. V. 309. P. 314.
  48. Ammal S.C., Heyden A. // ACS Catal. 2019. V. 9. № 9. P. 7721.
  49. Fu Q., Saltsburg H., Flytzani-Stephanopoulos M. // Science. 2003. V. 301. № 5635. P. 935.
  50. Mei Z., Li Y., Fan M., Zhao L., Zhao J. // Chem. Eng. J. 2015. V. 259. P. 293.
  51. Boronin A.I., Slavinskaya E.M., Figueroba A., Stadnichenko A.I., Kardash T.Y., Stonkus O.A., Fedorova E.A., Muravev V.V., Svetlichnyi V.A., Bruix A., Neyman K.M. // Appl. Catal. B: Environ. 2021. V. 286. Art. 119931.
  52. Gorlova A.M., Panafidin M.A., Shilov V.A., Pakharukova V.P., Snytnikov P.V., Potemkin D.I. // Int. J. Hydrogen Energy. 2023. V. 48. № 32. P. 12015.
  53. Yuan K., Guo Y., Lin Q.L., Huang L., Ren J.T., Liu H.C., Yan C.H., Zhang Y.W. // J. Catal. 2021. V. 394. P. 121.
  54. Li Y., Kottwitz M., Vincent J.L., Enright M.J., Liu Z., Zhang L., Huang J., Senanayake S.D., Yang W.C.D., Crozier P.A., Nuzzo R.G., Frenkel A.I. // Nat. Commun. 2021. V. 12. № 1. P. 1.
  55. Petallidou K.C., Kalamaras C.M., Efstathiou A.M. // Catal. Today. 2014. V. 228. P. 183.
  56. Ricote S., Jacobs G., Milling M., Ji Y., Patterson P.M., Davis B.H. // Appl. Catal. A: Gen. 2006. V. 303. № 1. P. 35.
  57. Liu X., Ruettinger W., Xu X., Farrauto R. // Appl. Catal. B: Environ. 2005. V. 56. № 1–2. P. 69.
  58. Fu Q., Deng W., Saltsburg H., Flytzani-Stephanopoulos M. // Appl. Catal. B: Environ. 2005. V. 56. № 1–2. P. 57.
  59. Duarte de Farias A.M., Nguyen-Thanh D., Fraga M.A. // Appl. Catal. B: Environ. 2010. V. 93. № 3–4. P. 250.
  60. Panagiotopoulou P., Papavasiliou J., Avgouropoulos G., Ioannides T., Kondarides D.I. // Chem. Eng. J. 2007. V. 134. № 1–3. P. 16.
  61. Горлова А.М., Пахарукова В.П., Стонкус О.А., Рогожников В.Н., Гладкий А.Ю., Снытников П.В., Потемкин Д.И. // Кинетика и катализ. 2023. Т. 64. № 4. С. 447.
  62. Lee K., Knoblauch N., Agrafiotis C., Pein M., Roeb M., Sattler C. // Open Ceramics. 2022. V. 10. Art. 100269.
  63. Yuan K., Sun X.C., Yin H.J., Zhou L., Liu H.C., Yan C.H., Zhang Y.W. // J. Energy Chem. 2022. V. 67. P. 241.
  64. Li S., Deng J., Wang J., Chen Y., Li Y. // J. Rare Earths. 2023. V. 41. I. 12. P. 1969.
  65. Sartoretti E., Novara C., Chiodoni A., Giorgis F., Piumetti M., Bensaid S., Russo N., Fino D. // Catal. Today. 2022. V. 390–391. P. 117.
  66. Andreeva D., Idakiev V., Tabakova T., Ilieva L., Falaras P., Bourlinos A., Travlos A. // Catal. Today. 2002. V. 72. № 1–2. P. 51.
  67. Tabakova T., Ilieva L., Ivanov I., Manzoli M., Zanella R., Petrova P., Kaszkur Z. // J. Rare Earths. 2019. V. 37. № 4. P. 383.
  68. Andreeva D., Ivanov I., Ilieva L., Abrashev M.V., Zanella R., Sobczak J.W., Lisowski W., Kantcheva M., Avdeev G., Petrov K. // Appl. Catal. A: Gen. 2009. V. 357. № 2. P. 159.
  69. Kaur T., Singh K., Kolte J. // Mater. Today Proc. 2023. V. 80. № 2. P. 937.
  70. Chanapattharapol K.C., Krachuamram S., Kidkhunthod P., Poo-arporn Y. // Solid State Sci. 2020. V. 99. Art. 106066.
  71. Ballauri S., Sartoretti E., Hu M., D’Agostino C., Ge Z., Wu L., Novara C., Giorgis F., Piumetti M., Fino D., Russo N., Bensaid S. // Appl. Catal. B: Environ. 2023. V. 320. Art. 121898.
  72. Shi J., Li H., Genest A., Zhao W., Qi P., Wang T., Rupprechter G. // Appl. Catal. B: Environ. 2022. V. 301. Art. 120789.
  73. Poggio-Fraccari E., Mariño F., Laborde M., Baronetti G. // Appl. Catal. A: Gen. 2013. V. 460–461. № 3. P. 15.
  74. González-Castaño M., Ivanova S., Centeno M.A., Ioanides T., Arellano-García H., Odriozola J.A. // Int. J. Energy Res. 2021. V. 45. № 9. P. 13978.
  75. Gupta A., Hegde M.S. // Appl. Catal. B: Environ. 2010. V. 99. № 1–2. P. 279.
  76. Mamontov E., Egami T., Brezny R., Koranne M., Tyagi S. // J. Phys. Chem. B. 2000. V. 104. № 47. P. 11110.
  77. Li J., Liu X., Zhan W., Guo Y., Guo Y., Lu G. // Catal. Sci. Technol. 2016. V. 6. № 3. P. 897.
  78. Song L., Zhu L., Li L. // Crystals (Basel). 2018. V. 8. № 7. Art. 261.
  79. Deshpande P.A., Hegde M.S., Madras G. // Appl. Catal. B: Environ. 2010. Vol. 96. № 1–2. P. 83–93.
  80. Choung S.Y., Ferrandon M., Krause T. // Catal. Today. 2005. V. 99. № 3. P. 257.
  81. Radhakrishnan R., Willigan R.R., Dardas Z., Vanderspurt T.H. // Appl. Catal. B: Environ. 2006. V. 66. № 1–2. P. 23.
  82. Konishcheva M.V., Potemkin D.I., Snytnikov P.V., Stonkus O.A., Belyaev V.D., Sobyanin V.A. // Appl. Catal. B: Environ. 2018. V. 221. P. 413.
  83. Palma V., Martino M., Pisano D., Ciambelli P. // Chem. Eng. Trans. 2016. V. 52. P. 481.
  84. Gorlova A.M., Rogozhnikov V.N., Pechenkin A.A., Nikulina I.E., Potemkin D.I. // Nanobiotechnol. Rep. 2023. Vol. 18. № Suppl. 2. P. S279.
  85. Palma V., Ruocco C., Cortese M., Martino M. // Catalysts. 2019. V. 9. № 12. P. 1.
  86. Konishcheva M.V., Svintsitskiy D.A., Potemkin D.I., Rogozhnikov V.N., Sobyanin V.A., Snytnikov P.V. // ChemistrySelect. 2020. V. 5. № 3. P. 1228.
  87. Wheeler C., Jhalani A., Klein E.J., Tummala S., Schmidt L.D. // J. Catal. 2004. V. 223. № 1. P. 191.
  88. Palma V., Pisano D., Martino M. // Int. J. Hydrogen Energy. 2018. V. 43. № 26. P. 11745.
  89. García-Moncada N., Groppi G., Beretta A., Romero-Sarria F., Odriozola J.A. // Catalysts. 2018. V. 8. № 12. P. 594.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).