Active and stable Ni/Al2O3–(Zr + Ce)O2 catalyst for syngas production via glycerol dry reforming

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A nickel-based catalyst supported on alumina-zirconia-ceria oxides was investigated to evaluate its performance in the dry reforming of glycerol with CO₂. The reaction was carried out at 700°C, atmospheric pressure and a glycerol/CO₂ molar ratio of 1. The catalyst showed stable operation for 7 h and achieved glycerol and CO₂ conversions of 60 and 47%, respectively, with H₂ and CO yields of 48 and 58%. Thermogravimetric analysis revealed the presence of carbon deposits, which, however, did not result in a significant loss of activity. These results highlight the potential of the synthesized catalyst for glycerol conversion for the production of syngas and hydrogen from renewable feedstock.

About the authors

Yu. A. Fionov

Department of Physical and Colloid Chemistry, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University)

Email: fionovyuri@gmail.com
Miklukho-Maklaya St., 6, Moscow, 117198 Russia

S. M. Semenova

Department of Physical and Colloid Chemistry, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University)

Email: fionovyuri@gmail.com
Miklukho-Maklaya St., 6, Moscow, 117198 Russia

S. V. Khaibullin

Department of Physical and Colloid Chemistry, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University)

Email: fionovyuri@gmail.com
Miklukho-Maklaya St., 6, Moscow, 117198 Russia

E. A. Fionova

Department of Digital and Additive Technologies, MIREA – Russian Technological University

Email: fionovyuri@gmail.com
prosp. Vernadskogo, 78, bldg. 4, Moscow, 119454 Russia

I. G. Bratchikova

Department of Physical and Colloid Chemistry, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University)

Email: fionovyuri@gmail.com
Miklukho-Maklaya St., 6, Moscow, 117198 Russia

A. N. Kharlanov

Faculty of Chemistry, Lomonosov Moscow State University

Email: fionovyuri@gmail.com
GSP-1, Leninskiye Gory, 1, bldg. 3, Moscow, 119991 Russia

A. I. Zhukova

Department of Physical and Colloid Chemistry, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University)

Author for correspondence.
Email: pylinina@list.ru
Miklukho-Maklaya St., 6, Moscow, 117198 Russia

References

  1. Kolesárová N., Hutňan M., Bodík I., Špalková V. // BioMed Res. Int. 2011. V. 2011. 126798. https://doi.org/10.1155/2011/126798
  2. Cheng C.K., Lim R.H., Ubil A., Chin S.Y., Gimbun J. // Adv. Mater. Phys. Chem. 2012. V. 2. 24B043. https://doi.org/10.4236/ampc.2012.24B043
  3. Schwengber C.A., Alves H.J., Schaffner R.A., Alves da Silva F., Sequinel R., Rossato Bach V., Ferracin R.J. // Renew. Sustain. Energy Rev. 2016. V. 58. P. 259. https://doi.org/10.1016/j.rser.2015.12.279
  4. Sadykov V.A., Simonov M.N., Belpalko Y.N., Bobrova L.N., Eremeev N.F., Arapova M.V., Smal’ E.A., Mezentseva N.V., Pavlova S.N. // Kinet. Catal. 2019. Vol. 60. № 5. Р. 582. https://doi.org/10.1134/S0023158419050082
  5. Sabri F., Idem R., Ibrahim H. // Ind. Eng. Chem. Res. 2018. V. 57. P. 2486. https://doi.org/10.1021/acs.iecr.7b04582
  6. Pairojpiriyakul T., Kiatkittipong W., Assabumrungrat S., Croiset E. // Int. J. Hydrogen Energy. 2014. V. 39. P. 159. https://doi.org/10.1016/j.ijhydene.2013.09.148
  7. Mohd Arif N.N., Zainal Abidin S., Osazuwa O.U., Vo D.-V.N., Azizan M.T. // Int. J. Hydrogen Energy. 2019. V. 44. P. 20857. https://doi.org/10.1016/j.ijhydene.2018.06.084
  8. Kamonsuangkasem K., Therdthianwong S., Therdthianwong A. // Fuel Process. Technol. 2013. V. 106. P. 695. https://doi.org/10.1016/j.fuproc.2012.10.003
  9. Iriondo A., Cambra J.F., Barrio V.L., Guemez M.B., Arias P.L., Sanchez-Sanchez M.C., Navarro R.M., Fierro J.L.G. // Appl. Catal. B: Environ. 2011. V. 106. P. 83. https://doi.org/10.1016/j.apcatb.2011.05.009
  10. Tamošiūnas A., Gimžauskaitė D., Aikas M., Uscila R., Zakarauskas K. // Int. J. Hydrogen Energy. 2022. V. 47. P. 12219. https://doi.org/10.1016/j.ijhydene.2021.06.203
  11. Sahraei O.A.Z., Larachi F., Abatzoglou N., Iliuta M.C. // Appl. Catal. B: Environ. 2017. V. 219. P. 183. https://doi.org/10.1016/j.apcatb.2017.07.039
  12. Lee H.C., Siew K.W., Khan M.R., Chin S.Y., Cheng C.K. // J. Energy Chem. 2014. V. 23. P. 645. https://doi.org/10.1016/S2095-4956(14)60196-0
  13. Siew K.W., Lee H.C., Gimbun J., Cheng C.K. // J. Energy Chem. 2014. V. 23. P. 15. https://doi.org/10.1016/S2095-4956(14)60112-1
  14. Siew K.W., Lee H.C., Gimbun J., Chin S.Y., Khan M.R., Taufiq-Yap Y.H., Cheng C.K. // Renew. Energy. 2015. V. 74. P. 441. https://doi.org/10.1016/j.renene.2014.08.048
  15. Wang X., Li M., Wang M., Wang H., Li S., Wang S., Ma X. // Fuel. 2009. V. 88. P. 2148. https://doi.org/10.1016/j.fuel.2009.01.015
  16. Yu J., Odriozola J.A., Reina T.R. // Catalysts. 2019. V. 9. P. 1015. https://doi.org/10.3390/catal9121015
  17. Bychkov V.Y., Tulenin Y.P., Gorensberg A.Y., Korchak V.N. // Kinet. Catal. 2021. V. 62. № 1. P. 181. https://doi.org/10.1134/S0023158421010018
  18. Bychkov V.Y., Tyulenin Y.P., Korchak V.N. // Kinet. Catal. 2003. V. 44. P. 353. https://doi.org/10.1023/A:1024494918755
  19. Roslan N.A., Zainal Abidin S., Osazuwa O.U., Chin S.Y., Taufiq-Yap Y.H. // Int. J. Hydrogen Energy. 2021. V. 46. P. 30959. https://doi.org/10.1016/j.ijhydene.2021.03.162
  20. Tavanarad M., Meshkani F., Rezaei M. // J. CO Util. 2018. V. 24. P. 298. https://doi.org/10.1016/j.jcou.2018.01.009
  21. Fionov Y., Khlusova K., Chuklina S., Mushtakov A., Fionov A., Zhukov D., Averin A., Zhukova A. // Fuel. 2024. V. 376. 132685. https://doi.org/10.1016/j.fuel.2024.132685
  22. Golestani Kashani M., Ramezani Y., Meshkani F. // Mater. Today Commun. 2024. V. 40. 109999. https://doi.org/10.1016/j.mtcomm.2024.109999
  23. Memarian Z., Meshkani F. // Fuel. 2025. In press. https://doi.org/10.1016/j.fuel.2025.134902
  24. Huang L., Li D., Tian D., Jiang L., Li Z., Wang H., Li K. // Energy Fuel. 2022. V. 36. № 10. P. 5102. https://doi.org/10.1021/acs.energyfuels.2c00523
  25. Zhukova A.I., Chuklina S.G., Maslenkova S.A. // Catal. Today. 2021. V. 379. P. 159. https://doi.org/10.1016/j.cattod.2021.02.015
  26. Zhukova A., Fionov Y., Semenova S., Khaibullin S., Chuklina S., Maslakov K., Zhukov D., Isaikina O., Mushtakov A., Fionov A. // J. Phys. Chem. C. 2024. V. 128. № 47. P. 20177. https://doi.org/10.1021/acs.jpcc.4c07213
  27. Salehi S., Alavi S.M., Rezaei M., Akbari E., Varbar M. // J. CO Util. 2024. V. 81. 102737. https://doi.org/10.1016/j.jcou.2024.102737
  28. Harun N., Gimbun J., Azizan M.T., Zainal Abidin S. // Bull. Chem. React. Eng. Catal. 2016. V. 11. № 2. P. 220. https://doi.org/10.9767/bcrec.11.2.553.220-229
  29. Golestani Kashani M., Ramezani Y., Meshkani F. // Mater. Res. Bull. 2025. V. 182. 113135. https://doi.org/10.1016/j.materresbull.2024.113135
  30. Roslan N.A., Zainal Abidin S., Osazuwa O.U., Chin S.Y., Taufiq-Yap Y.H. // Fuel. 2022. V. 314. 123050. https://doi.org/10.1016/j.fuel.2021.123050
  31. Lyu Y., Jocz J., Xu R., Stavitski E., Sievers C. // ACS Catal. 2020. V. 10. № 19. P. 11235. https://doi.org/10.1021/acscatal.0c02426
  32. Huang Y., Li X., Zhang Q., Vinokurov V.A., Huang W. // Fuel. 2022. V. 310. 122449. https://doi.org/10.1016/j.fuel.2021.122449
  33. Wang Z., Cao X.-M., Zhu J., Hu P. // J. Catal. 2014. V. 311. P. 469. https://doi.org/10.1016/j.jcat.2013.12.015
  34. Harun N., Gimbun J., Azizan M.T., Zainal Abidin S. // Bull. Chem. React. Eng. Catal. 2016. V. 11. P. 220. https://doi.org/10.9767/bcrec.11.2.553.220-229
  35. Donphai W., Faungnawakij K., Chareonpanich M., Limtrakul J. // Appl. Catal. A: Gen. 2014. V. 475. P. 16. https://doi.org/10.1016/j.apcata.2014.01.014
  36. Zhukova A., Fionov Y., Chuklina S., Mikhalenko I., Fionov A.V., Isaikina O., Zhukov D.Y., de Lima A.M. // Energy Fuel. 2024. V. 38. P. 482. https://doi.org/10.1021/acs.energyfuels.3c03421
  37. Zhang G., Wang Y., Li X., Bai Y., Zheng L., Wu L., Han X. // Ind. Eng. Chem. Res. 2018. V. 57. № 50. P. 17076. https://doi.org/10.1021/acs.iecr.8b03612
  38. Weiss B.P., Kim S.S., Kirschvink J.L., Kopp R.E., Sankaran M., Kobayashi A., Komeili A. // Earth Planet. Sci. Lett. 2004. V. 224. P. 73. https://doi.org/10.1016/j.epsl.2004.04.024
  39. Manukyan A.S., Mirzakhanyan A.A., Badalyan G.R., Shirinyan G.H., Fedorenko A.G., Lianguzov N.V., Yuzyuk Y.I., Bugaev L.A., Sharoyan E.G. // J. Nanopart. Res. 2012. V. 14. P. 982. https://doi.org/10.1007/s11051-012-0982-6
  40. Zhou L., Li L., Wei N., Li J., Basset J.-M. // ChemCatChem. 2015. V. 7. № 16. P. 2508. https://doi.org/10.1002/cctc.201500379
  41. Pegios N., Bliznuk V., Theofanidis S.A., Galvita V.V., Marin G.B., Palkovits R., Simeonov K. // Appl. Surf. Sci. 2018. V. 452. P. 239. https://doi.org/10.1016/j.apsusc.2018.04.229
  42. Bannov A.G., Popov M.V., Kurmashov P.B. // J. Therm. Anal. Calorim. 2020. V. 142. P. 349. https://doi.org/10.1007/s10973-020-09647-2

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).