MNOX/ZRO2–CEO2 catalysts for CO and propane oxidation: the effect of manganese content
- Authors: Afonasenko T.N.1, Yurpalova D.V.1, Yurpalov V.L.2, Konovalova V.P.1, Rogov V.A.1, Aydakov E.E.1,3, Serkova A.N.1, Bulavchenko O.A.1
-
Affiliations:
- Institute of Catalysis SB RAS
- Center of New Chemical Technologies, Boreskov Institute of Catalysis SB RAS
- Synchrotron Radiation Facility SKIF, Boreskov Institute of Catalysis SB RAS
- Issue: Vol 66, No 1 (2025)
- Pages: 3-18
- Section: ОБЗОР
- URL: https://journals.rcsi.science/0453-8811/article/view/305129
- DOI: https://doi.org/10.31857/S0453881125010015
- EDN: https://elibrary.ru/eipaec
- ID: 305129
Cite item
Abstract
The effect of the content of supported manganese on the structural properties and activity in the oxidation reactions of CO and propane for the MnОx/Zr0.4Ce0.6 catalysts prepared by the impregnation method has been studied. It was found that an increase in manganese content to 3.6% wt. (molar ratio Mn/(Zr + Ce) ≤ 0.1) leads to an increase in the catalytic activity of MnОx/Zr0.4Ce0.6 in oxidation reactions. In the case of a higher manganese concentration, the activity changes slightly. According to the XRD, TPR-H2, XPS and EPR, an increase in the amount of supported manganese for samples with Mn/(Zr + Ce) ≤ 0.1 is accompanied by a change in the lattice constant of the support, an increase in the amount of weakly bound oxygen, as well as the quantity of oxygen vacancies in the structure of cerium oxide. These changes are due to the incorporation of manganese into the structure of the support and the possible formation of highly dispersed particles of MnОx on its surface which ensures an increase in catalytic activity. Stabilization of catalytic activity with a further increase in the amount of supported manganese correlates with a slight change in the amount of weakly bound oxygen and oxygen vacancies of the support due to the appearance and subsequent increase in the content of the less active Mn2O3 phase.
About the authors
T. N. Afonasenko
Institute of Catalysis SB RAS
Email: atnik@ihcp.ru
Lavrentiev Ave., 5, Novosibirsk, 630090 Russia
D. V. Yurpalova
Institute of Catalysis SB RAS
Email: atnik@ihcp.ru
Lavrentiev Ave., 5, Novosibirsk, 630090 Russia
V. L. Yurpalov
Center of New Chemical Technologies, Boreskov Institute of Catalysis SB RAS
Email: atnik@ihcp.ru
Neftezavodskaya, 54, Omsk, 644040 Russia
V. P. Konovalova
Institute of Catalysis SB RAS
Email: atnik@ihcp.ru
Lavrentiev Ave., 5, Novosibirsk, 630090 Russia
V. A. Rogov
Institute of Catalysis SB RAS
Email: atnik@ihcp.ru
Lavrentiev Ave., 5, Novosibirsk, 630090 Russia
E. E. Aydakov
Institute of Catalysis SB RAS; Synchrotron Radiation Facility SKIF, Boreskov Institute of Catalysis SB RAS
Email: atnik@ihcp.ru
Lavrentiev Ave., 5, Novosibirsk, 630090 Russia; Nikolsky Prosp., 1, Kol’tsovo, 630559 Russia
A. N. Serkova
Institute of Catalysis SB RAS
Email: atnik@ihcp.ru
Lavrentiev Ave., 5, Novosibirsk, 630090 Russia
O. A. Bulavchenko
Institute of Catalysis SB RAS
Author for correspondence.
Email: obulavchenko@catalysis.ru
Lavrentiev Ave., 5, Novosibirsk, 630090 Russia
References
- Everaert K., Baeyens J. // J. Hazard. Mater. 2004. V. 109. P. 113. https://doi.org/10.1016/j.jhazmat.2004.03.019
- Li W.B., Wang J.X., Gong H. // Catal. Today. 2010. V. 148. P. 81. https://doi.org/10.1016/j.cattod.2009.03.007
- Yue B., Zhou R., Wang Y., Zheng X. // Appl. Surf. Sci. 2006. V. 252. P. 5820. https://doi.org/10.1016/j.apsusc.2005.07.043
- Snytnikov P.V., Sobyanin V.A., Belyaev V.D., Tsyrulnikov P.G., Shitova N.B., Shlyapin D.A. // Appl. Catal. A: Gen. 2003. V. 239. P. 149. https://doi.org/10.1016/S0926-860X(02)00382-4
- Liu Z., Zhou R., Zheng X. // J. Mol. Catal. A: Chem. 2007. V. 267. Р. 137. https://doi.org/10.1016/j.molcata.2006.11.036
- Tang W., Wu X., Li D., Wang Z., Liu G., Liu H., Chen Y. // J. Mater. Chem. A. 2014. V. 2. P. 2544. https://doi.org/10.1039/c3ta13847j
- Pozan G.S. // J. Hazard. Mater. 2012. V. 221—222. P. 124. https://doi.org/10.1016/j.jhazmat.2012.04.022
- Shen B., Wang Y., Wang F., Liu T. // Chem. Eng. J. 2014. V. 236. P. 171. https://doi.org/10.1016/ j.cej.2013.09.085
- Li S., Zheng Z., Zhao Z., Wang Y., Yao Y., Liu Y., Zhang J., Zhang Z. // Molecules. 2022. V. 27. Art. 4863. https://doi.org/10.3390/molecules27154863
- Frey K., Iablokov V., Sáfrán G., Osán J., Sajó I., Szukiewicz R., Chenakin S., Kruse N. // J. Catal. 2012. V. 287. P. 30. https://doi.org/10.1016/j.jcat.2011.11.014
- Zhong L., Fang Q., Li X., Li Q., Zhang C., Chen G. // Appl. Catal. A: Gen. 2019. V. 579. P. 151. https://doi.org/10.1016/j.apcata.2019.04.013
- Mobini S., Meshkani F., Rezaei M. // Chem. Eng. Sci. 2019. V. 197. P. 37. https://doi.org/10.1016/ j.ces.2018.12.006
- Zhao G., Li J., Zhu W., Ma X., Guo Y., Liu Z., Yang Y. // New J. Chem. 2016. V. 40. P. 10108. https://doi.org/10.1039/c6nj02272c
- Long G., Chen M., Li Y., Ding J., Sun R., Zhou Y., Huang X., Han G., Zhao W. // Chem. Eng. J. 2019. V. 360. P. 964. https://doi.org/10.1016/j.cej. 2018.07.091
- Liu X., Lu J., Qian K., Huang W., Luo M. // J. Rare Earths. 2009. V. 27. P. 418. https://doi.org/10.1016/S1002-0721(08)60263-X
- Lu H.F., Zhou Y., Han W.F., Huang H.F., Chen Y.F. // Appl. Catal. A: Gen. 2013. V. 464—465. P. 101. https://doi.org/10.1016/j.apcata.2013.05.036
- Nelson A.E., Schulz K.H. // Appl. Surf. Sci. 2003. V. 210. P. 206. https://doi.org/10.1016/S0169-4332(03)00157-0
- Terribile D., Tovarelli A., de Leitenburg C., Primavera A., Dolcetti G. // Catal. Today. 1999. V. 47. P. 133.
- Afonasenko T.N., Glyzdova D.V., Yurpalov V.L., Konovalova V.P., Rogov V.A., Gerasimov E.Y. // Materials. 2022. V. 15. P. 7553. https://doi.org/10.3390/ma15217553
- Sun W., Li X., Mu J., Fan S., Yin Z., Wang X., Qin M., Tadé M., Liu S. // J. Colloid Interf. Sci. 2018. V. 531. P. 91. https://doi.org/10.1016/j.jcis.2018.07.050
- Azalim S., Franco M., Brahmi R., Giraudon J.M., Lamonier J.F. // J. Hazard. Mater. 2011. V. 188. P. 422. https://doi.org/10.1016/j.jhazmat.2011.01.135
- Rao T., Shen M., Jia L., Hao J., Wang J. // Catal. Commun. 2007. V. 8. P. 1743. https://doi.org/10.1016/j.catcom.2007.01.036
- Hou Z., Feng J., Lin T., Zhang H., Zhou X., Chen Y. // Appl. Surf. Sci. 2018. V. 434. P. 82. https://doi.org/ 10.1016/j.apsusc.2017.09.048
- Shen B., Zhang X., Ma H., Yao Y., Liu T. // J. Environ. Sci. 2013. V. 25. P. 791. https://doi.org/10.1016/S1001-0742(12)60109-0
- Tang X., Li Y., Huang X., Xu Y., Zhu H., Wang J., Shen W. // Appl. Catal. B: Environ. 2006. V. 62. P. 265. https://doi.org/10.1016/j.apcatb.2005.08.004
- Scofield J.H. // J. Electron Spectrosc. Relat. Phenom. 1976. V. 8. № 2. P. 129.
- Shirley D.A. // Phys. Rev. B. 1972. V. 5. P. 4709.
- Fairley N. CasaXPS. www.casaxps.com
- Цырульников П.Г., Сальников В.С., Дроздов В.А., Стукен С.А., Бубнов А.В., Григоров Е.И., Калинкин А.В., Зайковский В.И. // Кинетика и катализ. 1991. Т. 32. № 2. С. 439.
- Kaplin I.Y., Lokteva E.S., Golubina E.V., Shishova V.V., Maslakov K.I., Fionov A.V., Isaikina O.Y., Lunin V.V. // Appl. Surf. Sci. 2019. V. 485. P. 432. https://doi.org/10.1016/j.apsusc.2019.04.206
- Venkataswamy P., Rao K.N., Jampaiah D., Reddy B.M. // Appl. Catal. B: Environ. 2015. V. 162. P. 122. https://doi.org/10.1016/j.apcatb.2014.06.038
- Huang X., Li L., Liu R., Li H., Lan L., Zhou W. // Catalysts. 2021. V. 11. № 9. Art. 1037. https://doi.org/10.3390/catal11091037
- Афонасенко Т.Н., Булавченко О.А., Гуляева Т.И., Цыбуля С.В., Цырульников П.Г. // Кинетика и катализ. 2018. Т. 59. № 1. С. 127. (Afonasenko T.N., Bulavchenko O.A., Gulyaeva T.I., Tsybulya S.V., Tsyrul’ni- kov P.G. // Kinet. Catal. 2018. V. 59. P. 104. https://doi.org/10.1134/S0023158418010019)
- Yang M., Shen G., Wang Q., Deng K., Liu M., Chen Y., Gong Y., Wang Z. // Molecules. 2021. V. 26. Art. 6363. https:// doi.org/10.3390/molecules26216363
- Martínez-Arias A., Fernández-García M., Belver C., Conesa J.C., Soria J. // Catal. Lett. 2000. V. 65. P. 197. https://doi.org/10.1023/A:1019089910238
- Silva-Calpa L. del R., Zonetti P.C., Rodrigues C.P., Alves O.C., Appel L.G., de Avillez R.R. // J. Mol. Catal. A: Chem. 2016. V. 425. P. 166. https://doi.org/10.1016/j.molcata.2016.10.008
- Anpo M., Costentin G., Giamello E., Lauron-Pernot H., Sojka Z. // J. Catal. 2021. V. 393. P. 259. https://doi.org/10.1016/j.jcat.2020.10.011
- Che M., Dyrek K., Louis C. // J. Phys. Chem. 1985. V. 89. P. 4526. https://doi.org/10.1021/j100267a022
- Borchert H., Frolova Y.V., Kaichev V.V., Prosvirin I.P., Alikina G.M., Lukashevich A.I., Zaikov-skii V.I., Moroz E.M., Trukhan S.N., Ivanov V.P., Paukshtis E.A., Bukhtiyarov V.I., Sadykov V.A. // J. Phys. Chem. B. 2005. V. 109. P. 5728. https://doi.org/10.1021/jp045828c
- Christou S.Y., Álvarez-Galván M.C., Fierro J.L.G., Efstathiou A.M. // Appl. Catal. B: Environ. 2011. V. 106. P. 103. https://doi.org/10.1016/j.apcatb.2011.05.013
- Han Y.F., Chen F., Zhong Z., Ramesh K., Chen L., Widjaja E. // J. Phys. Chem. B. 2006. V. 110. P. 24450. https://doi.org/10.1021/jp064941v
- Castro V.D., Polzonetti G. // J. Electron Spectrosc. Relat. Phenom. 1989. V. 48. P. 117.
- Feng X., Cox D.F. // Surf. Sci. 2016. V. 645. P. 23. https://doi.org/10.1016/j.susc.2015.10.041
- Gómez L.E., Miró E.E., Boix A.V. // Int. J. Hydrogen Energy. 2013. V. 38. P. 5645. https://doi.org/10.1016/j.ijhydene.2013.03.004
- Bulavchenko O.A., Afonasenko T.N., Ivanchikova A.V., Murzin V.Y., Kremneva A.M., Saraev A.A., Kaichev V.V., Tsybulya S.V. // Inorg. Chem. 2021. V. 60. P. 16518. https://doi.org/10.1021/acs.inorgchem.1c02379
Supplementary files
