Effect of Modifier M (M = Ca, Sr, Ba) on Pd–Cu/Mo/Al2O3 Catalysts Selectivity of in the Ethanol Conversion to 1-Butanol
- Authors: Nikolaev S.A.1, Bagdatov R.A.2, Chistyakov A.V.2, Tsodikov M.V.2
-
Affiliations:
- Lomonosov Moscow State University
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
- Issue: Vol 65, No 6 (2024)
- Pages: 646-658
- Section: ОБЗОРЫ
- URL: https://journals.rcsi.science/0453-8811/article/view/285142
- DOI: https://doi.org/10.31857/S0453881124060055
- EDN: https://elibrary.ru/QKEZHO
- ID: 285142
Cite item
Abstract
Pd–Cu/MO/Al2O3 catalysts (M = Ca, Sr, Ba; [M] = 5 wt.%; [Pd] = 0.3 wt.%; [Cu] = 0.2 wt.%) were synthesized via impregnation. Transmission electron microscopy and X-ray photoelectron spectroscopy revealed that the deposition of copper and palladium on the MO/ Al2O3 surface results in the formation of high-density Pd0–Cu0 active particles with an average size of 6 nm. It was shown that at 275°C, the selectivity of 1-butanol formation from ethanol varies as follows: 0.2% Cu/0.3% Pd/Al2O3 << 0.2% Cu/0.3% Pd/5% CaO/ /Al2O3 ≈ 0.2% Cu/0.3% Pd/5% SrO/Al2O3 < 0.2% Cu/0.3% Pd/5% BaO/Al2O3. This trend correlates with changes in the acidity of the catalysts in the same order. Based on kinetic data, it was established that the use of a 5% BaO/ Al2O3 support in the Pd–Cu catalyst composition allows for a ~20-fold reduction in the rate of formation of the by-product diethyl ether while maintaining a high rate of 1-butanol formation.
Keywords
Full Text

About the authors
S. A. Nikolaev
Lomonosov Moscow State University
Email: bagdatov.ruslan@yandex.ru
ORCID iD: 0000-0002-9091-3537
Russian Federation, 1 Leninskie Gory, Moscow, 119991
R. A. Bagdatov
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Author for correspondence.
Email: bagdatov.ruslan@yandex.ru
ORCID iD: 0000-0002-6069-6148
Russian Federation, 29 Leninsky Prospect, Moscow, 119991
A. V. Chistyakov
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Email: bagdatov.ruslan@yandex.ru
ORCID iD: 0000-0002-4443-7998
Russian Federation, 29 Leninsky Prospect, Moscow, 119991
M. V. Tsodikov
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Email: bagdatov.ruslan@yandex.ru
ORCID iD: 0000-0002-8253-2945
Russian Federation, 29 Leninsky Prospect, Moscow, 119991
References
- Lee J., Lin K.Y.A. Bio-Butanol Production on Heterogeneous Catalysts: A Review // J. Taiwan Inst. Chem. Eng. 2024. V. 157. Art. 105421. https://doi.org/10.1016/j.jtice.2024.105421
- Choi H., Han J., Lee J. Renewable butanol production via catalytic routes // Int. J. Environ. Res. Public Health. 2021. V. 18. № 22. Art. 11749. https://doi.org/10.3390/ijerph182211749
- Gabriëls D., Hernández W.Y., Sels B., Voort P.V.D., Verberckmoes A. Review of catalytic systems and thermodynamics for the Guerbet condensation reaction and challenges for biomass valorization // Catal. Sci. Technol. 2015. V. 5. P. 3876. https://doi.org/10.1039/C5CY00359H
- Kozlowski J.T., Davis R.J. Heterogeneous Catalysts for the Guerbet Coupling of Alcohols // ACS Catal. 2013. V. 3. № 7. P. 1588. https://doi.org/10.1021/cs400292f
- Tseng K.N.T., Lin S., Kampf J.W., Szymczak N.K. Upgrading ethanol to 1-butanol with a homogeneous air-stable ruthenium catalyst // Chem. Commun. 2016. V. 52. № 14. P. 2901. https://doi.org/10.1039/C5CC09913G
- Xie Y., Ben-David Y., Shimon L.J.W., Milstein D. Highly Efficient Process for Production of Biofuel from Ethanol Catalyzed by Ruthenium Pincer Complexes // J. Am. Chem. Soc. 2016. V. 138. № 29. P. 9077. https://doi.org/10.1021/jacs.6b05433
- Koda K., Matsu-ura T., Obora Y., Ishii Y. Guerbet Reaction of Ethanol to n-Butanol Catalyzed by Iridium Complexes // Chem. Lett. 2009. V. 38. № 8. P. 838. https://doi.org/10.1246/cl.2009.838
- Wang Z., Yin M., Pang J., Li X., Xing Y., Su Y., Liu S., Liu X., Wu P., Zheng M., Zhang T. Active and stable Cu doped NiMgAlO catalysts for upgrading ethanol to n-butanol // J. Energy Chem. 2022. V. 72. P. 306. https://doi.org/10.1016/j.jechem.2022.04.049
- Li S., Han X., An H., Zhao X., Wang Y. Повышение стабильности Ni/TiO2-катализаторов в реакции конденсации этанола Гербе: влияние второго металлического компонента // Кинетика и катализ. 2021. Т. 62. №. 5. С. 581. (Li S., Han X., An H., Zhao X., Wang Y. Improving the Catalytic Stability of Ni/TiO2 for Ethanol Guerbet Condensation: Influence of Second Metal Component // Kinet. Catal. 2021. V. 62. № 5. P. 632.) https://doi.org/10.1134/S0023158421050025
- Эзжеленко Д.И., Николаев C.A., Чистяков А.В., Чистякова П.А., Цодиков М.В. Механизм дезактивации палладиевых катализаторов конверсии этанола в бутанол // Нефтехимия. 2021. Т. 61. № 3. С. 405. (Ezzhelenko D.I., Nikolaev S.A., Chistyakov A.V., Chistyakova P.A., Tsodikov M.V. Deactivation Mechanism of Palladium Catalysts for Ethanol Conversion to Butanol // Pet. Chem. 2021. V. 61. P. 504.) https://doi.org/10.1134/S0965544121050017
- Николаев С.А., Цодиков М.В., Чистяков А.В., Чистякова П.А., Эзжеленко Д.И., Кротова И.Н. Влияние промотора M (M = Au, Ag, Cu, Ce, Fe, Ni, Co, Zn) на активность Pd-M/Al2O3 катализаторов конверсии этанола в a-спирты // Кинетика и Катализ. 2020. Т. 61. № 6. С. 864. (Nikolaev S.A., Tsodikov M.V., Chistyakov A.V., Chistyakova P.A., Ezzhelenko D.I., Krotova I.N. Effect of promoter M (M = Au, Ag, Cu, Ce, Fe, Ni, Co, Zn) on the activity of Pd–M/Al2O3 catalysts of ethanol conversion into α-alcohols // Kinet. Catal. 2020. V. 61. P. 955.) https://doi.org/10.1134/S0023158420060117
- Nikolaev S.A., Tsodikov M.V., Chistyakov A.V., Chistyakova P.A., Ezzhelenko D.I., Shilina M.I. PdCu nanoalloy supported on alumina: A stable and selective catalyst for the conversion of bioethanol to linear α-alcohols // Catal. Today. 2021. V. 379. P. 50. https://doi.org/10.1016/j.cattod.2020.06.061
- Эзжеленко Д.И. Закономерности каталитического действия моно- и биметаллических Pd-нанокомпозитов в превращении этанола в бутанол-1. Автореферат дисс. … к. х. н. Москва: МГУ им. М.В. Ломоносова, химический факультет, 2022. С. 27.
- Мамбетова М.М., Ергазиева Г.Е., Досумов K. Термоконверсия этанола на оксидах Al2O3 и SiO2 // Вестник КазНУ. Серия химическая. 2022. Т. 104. № 1. С. 22. (Mambetova M. M., Yergaziyeva G. E., Dossumov K. Thermoconversion of ethanol on Al2O3 and SiO2 oxides // Chem. Bull. Kaz. Nat. Univ. 2022. V. 104. № 1. P. 22.) https://doi.org/10.15328/cb1227
- Rubio-Rueda J.A., Quevedo-Hernandez J.P., López M.B., Galindo J.F., Hincapié-Triviño G. Mg/Al and Cu-Mg/Al mixed oxides derived from hydrotalcites as catalysts to produce 1-butanol from ethanol // Mol. Catal. 2024. V. 569. Art. 114528. https://doi.org/10.1016/j.mcat.2024.114528
- Frolich1 K., Malina1 J., Hájek1 M., Mück1 J., Kocík J. The utilization of bio-ethanol for production of 1-butanol catalysed by Mg–Al mixed metal oxides enhanced by Cu or Co // Clean Technol. Environ. Policy. 2024. V. 26. № 1. P. 79. https://doi.org/10.1007/s10098-023-02581-5
- Ndou A.S., Plint N., Coville N.J. Dimerisation of ethanol to butanol over solid-base catalysts // Appl. Catal. A: Gen. 2003. V. 251. P. 337. https://doi.org/10.1016/S0926-860X(03)00363-6
- Marcu I.C., Tanchoux N., Fajula F., Tichit D. Catalytic conversion of ethanol into butanol over M–Mg–Al mixed oxide catalysts (M = Pd, Ag, Mn, Fe, Cu, Sm, Yb) obtained from LDH precursors // Catal. Lett. 2013. V. 143. P. 23. https://doi.org/10.1007/s10562-012-0935-9
- Mück J., Kocík J., Hájek M., Tišler Z., Frolich K., Kašpárek A. Transition metals promoting Mg-Al mixed oxides for conversion of ethanol to butanol and other valuable products: Reaction pathways // Appl. Catal. A: Gen. 2021. V. 626. Art. 118380. https://doi.org/10.1016/j.apcata.2021.118380
- Perrone O.M., Lobefaro F., Aresta M., Nocito F., Boscolo M., Dibenedetto. A. Butanol synthesis from ethanol over CuMgAl mixed oxides modified with palladium(II) and indium(III) // Fuel Process. Technol. 2018. V. 177. P. 353. https://doi.org/10.1016/j.fuproc.2018.05.006
- Xiao Y., Zhan N., Li J., Tan Y., Ding Y. Highly Selective and Stable Cu Catalysts Based on Ni–Al Catalytic Systems for Bioethanol Upgrading to n-Butanol // Molecules. 2023. V. 28. № 15. Art. 5683. https://doi.org/10.3390/molecules28155683
- Cai F., Yang L., Shan S., Mott D., Chen B.H., Luo J., Zhong C.J. Preparation of PdCu alloy nanocatalysts for nitrate hydrogenation and carbon monoxide oxidation // Catalysts. 2016. V. 6. P. 96–110. https://doi.org/10.3390/catal6070096
- Nikolaev S.A., Golubina E.V., Shilina M.I. The effect of H2 treatment at 423–573 K on the structure and synergistic activity of Pd–Cu alloy catalysts for low-temperature CO oxidation // Appl. Catal. B: Environ. 2017. V. 208. P. 116. https://doi.org/10.1016/j.apcatb.2017.02.038
- Biesinger M.C., L.W.M. Lau, Gerson A.R., Smart R.St.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn // Appl. Surf. Sci. 2010. V. 257. P. 887. https://doi.org/10.1016/j.apsusc.2010.07.086
- Ivanova A.S., Slavinskaya E.M., Gulyaev R.V., Zaikovskii V.I., Stonkus О.А., Danilova I.G., Plyasova L.M., Polukhina I.A., Boronin A.I. Metal–support interactions in Pt/Al2O3 and Pd/Al2O3 catalysts for CO oxidation // Appl. Catal. B: Environ. 2010. V. 97. № 1–2. P. 57. https://doi.org/10.1016/j.apcatb.2010.03.024
- Sengar S.K., Mehta B.R., Govind. Size and alloying induced shift in core and valence bands of Pd–Ag and Pd–Cu nanoparticles // J. Appl. Phys. 2014. V. 115. № 12. P. 124301. https://doi.org/10.1063/1.4869437
- Панафидин М.А., Бухтияров А.В., Клюшин А.Ю., Просвирин И.П., Четырин И.А., Бухтияров В.И. Исследование модельных катализаторов Pd–Cu/ВОПГ и Pd–Ag/ВОПГ в реакциях окисления CO и метанола в субмиллибарном диапазоне давлений // Кинетика и катализ. 2019. Т. 60. № 6. С. 806. (Panafidin M.A., Bukhtiyarov A.V., Klyushin A.Yu., Prosvirin I.P., Chetyrin I.A., Bukhtiyarov V.I. Pd–Cu/HOPG and Pd–Ag/HOPG model catalysts in CO and methanol oxidations at submillibar pressures // Kinet. Catal. 2019. V. 60. № 6. P. 832.) https://doi.org/10.1134/S0023158419060107
- Nikolaev S.A., Tsodikov M.V., Chistyakov A.V., Zharova P.A., Ezzgelenko D.I. The activity of mono- and bimetallic gold catalysts in the conversion of sub- and supercritical ethanol to butanol // J. Catal. 2019. V. 369. P. 501. https://doi.org/10.1016/j.jcat.2018.11.017
- Riittonen T., Toukoniitty E., Madnani D.K., Leino A.R., Kordas K., Szabo M., Sapi A., Arve K., Wärnå J., Mikkola J.-P. One-pot liquid-phase catalytic conversion of ethanol to 1-butanol over aluminium oxide — the effect of the active metal on the selectivity // Catalysts. 2012. V. 2. P. 68. https://doi.org/10.3390/catal2010068
- Di L., Xu W., Zhan Z., Zhang X. Synthesis of alumina supported Pd–Cu alloy nanoparticles for CO oxidation via a fast and facile method // RSC Adv. 2015. V. 5. P. 71854. https://doi.org/10.1039/C5RA13813B
- Cai F., Yang L., Shan S., Mott D., Chen B.H., Luo J., Zhong C.J. Preparation of PdCu alloy nanocatalysts for nitrate hydrogenation and carbon monoxide oxidation // Catalysts. 2016. V. 6. № 7. P. 96. https://doi.org/10.3390/catal6070096
- Panafidin M.A., Bukhtiyarov A.V., Prosvirin I.P., Zubavichus Y.V., Bukhtiyarov V.I. Adaptivity of depth distribution of two metals in Pd-Ag/HOPG catalyst to external conditions in the course of mild CO oxidation // Surf. Interfaces. 2023. V. 41. Art. 103255. https://doi.org/10.1016/j.surfin.2023.103255
- Panafidin M.A., Bukhtiyarov A.V., Prosvirin I.P., Chetyrin I.A., Klyushin A.Yu., Knop-Gericke A., Smirnova N.S., Markov P.V., Mashkovsky I.S., Zubavichus Y.V., Stakheev A.Yu., Bukhtiyarov V.I. A mild post-synthesis oxidative treatment of Pd-In/HOPG bimetallic catalysts as a tool of their surface structure fine tuning // Appl. Surf. Sci. 2022. V. 571. Art. 151350. https://doi.org/10.1016/j.apsusc.2021.151350
Supplementary files
