Features of CO₂ Hydrogenation on MoO₃/Al₂O₃ and γ-Al₂O₃

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The physicochemical and catalytic (CO₂ hydrogenation) characteristics of Mo-containing catalysts have been studied. Catalysts with an oxide content of Mo 8 and 15 wt% were prepared by impregnation with ammonium paramolybdate γ-Al₂O₃ followed by drying and calcining at 500°C. The introduction of Mo oxide reduces the pore volume of the support and increases their average size, which indicates the distribution of the deposited molybdenum oxide in the pores of the support. According to X-ray diffraction data, the calcined catalyst contains practically no crystalline MoO₃ phase. According to the Raman spectra, oxygen-containing formations are present on the catalyst surface, in which Mo atoms are tetrahedrally and octahedrally coordinated with respect to oxygen atoms. The impregnated MoO₃ oxide is partially reduced by hydrogen during linear heating starting from 320°C. Hydrogenation of CO₂ (gas of composition, vol.%: 30.7 CO₂, 68 H₂, rest. N2, sample 0.5 g) was studied in the mode of linear heating up to 400°C. The main reaction is the reverse reaction of CO steam reforming. The contribution of the methanation reaction to CO₂ hydrogenation is small. An increase in temperature and pressure has a positive effect on CO₂ conversion. With an increase in pressure from 1 to 5 MPa, the CO content increases approximately twofold. In the hydrogenation of CO₂, γ-Al₂O₃, preheated in a flow of H₂ to 400°C, also exhibits noticeable activity, although significantly lower compared to Mo-containing catalysts. With increasing pressure, the activity of aluminium oxide and Mo-containing catalysts, increases.

Full Text

Restricted Access

About the authors

M. A. Kipnis

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Author for correspondence.
Email: kipnis@ips.ac.ru
Russian Federation, Leninsky prosp., 29, Moscow, 119991

P. V. Samokhin

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: kipnis@ips.ac.ru
Russian Federation, Leninsky prosp., 29, Moscow, 119991

R. S. Galkin

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: kipnis@ips.ac.ru
Russian Federation, Leninsky prosp., 29, Moscow, 119991

E. A. Volnina

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: kipnis@ips.ac.ru
Russian Federation, Leninsky prosp., 29, Moscow, 119991

N. A. Zhilyaeva

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: kipnis@ips.ac.ru
Russian Federation, Leninsky prosp., 29, Moscow, 119991

References

  1. Leonzio G. // J. CO₂ Util. 2018. V. 27. P. 326.
  2. Joo O.-S., Jung K.-D., Moon I., Rozovskii A. Ya., Lin G. I., Han S.-H., Uhm S.-J. // Ind. Eng. Chem. Res. 1999. V. 38. P. 1808.
  3. Vibhatavata P., Borgard J.-M., Tabarant M., Bianchi D., Mansilla C. // Int. J. Hydrogen Energy. 2013. V. 38. P. 6397.
  4. Martín N., Cirujano F. G. // J. CO₂ Util. 2022. V. 65. P. 102176.
  5. Zhou W., Kang J., Cheng K., He S., Shi J., Zhou C., Zhang Q., Chen J., Peng L., Chen M., Wang Y. // Angew. Chem. Int. Ed. 2018. V. 57. P. 12012.
  6. Li Z., Wang J., Qu Y., Liu H., Tang C., Miao S., Feng Z., An H., Li C. // ACS Catal. 2017. V. 7. P. 8544.
  7. Busca G. Heterogeneous catalytic materials. Solid state chemistry, surface chemistry and catalytic behavior. Ch. 9. Elsevier B. V., 2014. 463 p.
  8. Kunkes E., Behrens M. Methanol Chemistry / In: Chemical Energy Storage, Ed. Schlögl R. Berlin: De Gruyter Textbook, 2013. P. 413.
  9. Etim U. J., Zhang C., Zhong Z. // Nanomaterials. 2021. V. 11. P. 3265.
  10. Meng F., Yang G., Li B., Li Z. // Appl. Catal. A: Gen. 2022. V. 646. P. 118884.
  11. Wang J., Zhang G., Zhu J., Zhang X., Ding F., Zhang A., Guo X., Song C. // ACS Catal. 2021. V. 11. P. 1406.
  12. Li Y., Chen X., Zhang M., Zhu Y., Ren W., Mei Z., Gu M., Pan F. // Catal. Sci. Technol. 2019. V. 9. P. 803.
  13. Kim H.-S., Cook J. B., Lin H., Ko J. S., Tolbert S. H., Ozolins V., Dunn B. // Nature Mater. 2017. V. 16. P. 454.
  14. Noby S. Z., Fakharuddin A., Schupp S., Sultan M., Krumova M., Drescher M., Azarkh M., Boldt K., Schmidt-Mende L. // Mater. Adv. 2022. V. 3. P. 3571.
  15. Zhu M., Tian P., Ford M. E., Chen J., Xu J., Han Y.-F., Wachs I. E. // ACS Catal. 2020. V. 10. P. 7857.
  16. Синев М. Ю. // Кинетика и катализ. 2019. Т. 60. № 4. С. 450.
  17. Doornkamp C., Ponec V. // J. Mol. Catal. A. Chem. 2000. V. 162. P. 19.
  18. Кипнис М. А., Самохин П. В., Волнина Э. А., Магомедова М. В., Туркова Т. В. // Кинетика и катализ. 2022. Т. 63. № 3. С. 351. (Kipnis M. A., Samokhin P. V., Volnina E. A., Magomedova M. V., Turkova T. V. // Kinet. Catal. 2022. V. 63. № 3. Р. 292.)
  19. Гинье А. Рентгенография кристаллов. Теория и практика. Под ред. акад. Белова Н. В. Москва: Физматгиз, 1961. 604 с. (Guinier, A., Theorie et Technique de la Radiocristallographie. Paris: Dunod, 1956.)
  20. Кипнис М. А., Самохин П. В., Белостоцкий И. А., Туркова Т. В. // Катализ в промышленности. 2017. Т. 17. С. 442. (Kipnis M. A., Samokhin P. V., Belostotskii I. A., Turkova T. V. // Catal. Indust. 2018. V. 10. № 2. Р. 97.)
  21. https://ramanlife.com/library. Обращение 17.02.2023.
  22. Seguin L., Figlarz M., Cavagnat R., Lassègues J.-C. // Spectrochim. Acta. Part A. 1995. V. 51. Р. 1323.
  23. Knözinger H., Jeziorowski H. // J. Phys. Chem. 1978. V. 82. № 18. Р. 2002.
  24. Hu H., Wachs I. E., Bare S. R. // J. Phys. Chem. 1995. V. 99. № 27. Р. 10897.
  25. Liu X., Yang L., Huang M., Li Q., Zhao L., Sang Y., Zhang X., Zhao Z., Liu H., Zhou W. // Appl. Catal. B: Environ. 2022. V. 319. P. 121887.
  26. Catalyst handbook. Ed. M. Twigg. Wolfe Publishing Ltd., 1989. 575 p.
  27. Joubert J., Salameh A., Krakoviack V., Delbecq F., Sautet P., Copéret C., Basset J. M. // J. Phys. Chem. B. 2006. V. 110. P. 23944.
  28. Ferri D., Bürgi T., Baiker A. // Phys. Chem. Chem. Phys. 2002. V. 4. P. 2667.
  29. Rabee A. I.M., Zhao D., Cisneros S., Kreyenschulte C. R., Kondratenko V., Bartling S., Kubis C., Kondratenko E. V., Brückner A., Rabeah J. // Appl. Catal. B: Environ. 2023. V. 321. P. 122083.
  30. Yang Y.-N., Huang C.-W., Nguyen V.-H., Wu J. C.-S. // Catal. Commun. 2022. V. 162. P. 106373.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1

Download (199KB)
3. Fig.2

Download (210KB)
4. Fig.3

Download (134KB)
5. Fig.4

Download (197KB)
6. Fig.5

Download (140KB)
7. Fig.6

Download (127KB)
8. Fig.7

Download (70KB)


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies