New Catalyst Systems for the Polymerization of Norbornene and Its Derivatives Based on Cationic Palladium Cyclopentadienyl Complexes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The catalytic properties of systems based on [Pd(Cp)(L)n]m[BF₄]m (where Cp = η5-C5H5; n = 2, m = 1: L = tris(orthomethoxyphenyl)phosphine, triphenylphosphine, tris(2-furyl)phosphine (TFP), n = 1, m = 1: L = 1,1'-bis(diphenylphosphino)ferrocene, 1,3-bis(diphenylphosphino)propane, 1,4-bis(diphenylphosphino)butane, 1,5-bis(diphenylphosphino)pentane; n = 1, m = 2 or 3: L = 1,6-bis(diphenylphosphino)hexane) in the addition homoand copolymerization of norbornene (NB) and its derivatives have been studied. These complexes can be activated with the Lewis-acids (BF₃ ∙ OEt2 or AlCl3). The productivity of the [Pd(Cp)(PPh3)2][BF₄]/BF₃ ∙ OEt2 catalyst system in the polymerization of norbornene is up to 188800 molNB molPd⁻¹. The homopolymerization of 5-methoxycarbonylnorbornene and copolymerization of NB with 5-methoxycarbonylnorbornene or 5-phenylnorbornene were studied in the presence of BF₃ ∙ OEt2 and [Pd(Cp)(L)2][BF₄] (L = PPh3 or TFP). A hypothesis for the catalyst’s formation via the intramolecular rearrangement of the η5-Cp ligand into the η1-Cp form upon interaction with a Lewis acid is suggested. The structure of the [Pd(Cp)(TFP)2]BF₄ (I) was determined by X-ray diffraction. In the crystal structure of I, the palladium coordination sphere is characterized by a slight distortion of the square planar geometry of the central atom, and the cyclopentadiyl fragment is in an eclipsed conformation. Based on the XRD data, the steric hindrance of the TFP ligand was estimated (the cone angle is 149°).

Full Text

Restricted Access

About the authors

D. S. Suslov

Irkutsk State University, Department of Chemistry; Irkutsk State University, Research Institute of Oil and Coal Chemical Synthesis

Author for correspondence.
Email: suslov@chem.isu.ru
Russian Federation, K. Marksa st., 1, Irkutsk, 664003; Irkutsk, 664003

M. V. Pakhomova

Irkutsk State University, Department of Chemistry; Irkutsk State University, Research Institute of Oil and Coal Chemical Synthesis

Email: suslov@chem.isu.ru
Russian Federation, K. Marksa st., 1, Irkutsk, 664003; Irkutsk, 664003

M. V. Bykov

Irkutsk State University, Department of Chemistry; Irkutsk State University, Research Institute of Oil and Coal Chemical Synthesis

Email: suslov@chem.isu.ru
Russian Federation, K. Marksa st., 1, Irkutsk, 664003; Irkutsk, 664003

T. S. Orlov

Irkutsk State University, Research Institute of Oil and Coal Chemical Synthesis; National Research Irkutsk State Technical University, School of High Technologies

Email: suslov@chem.isu.ru
Russian Federation, Lermontov St., 83, K. Marksa st., 1, Irkutsk, 664003; Irkutsk, 664074

Z. D. Abramov

Irkutsk State University, Department of Chemistry; Irkutsk State University, Research Institute of Oil and Coal Chemical Synthesis

Email: suslov@chem.isu.ru
Russian Federation, K. Marksa st., 1, Irkutsk, 664003; Irkutsk, 664003

A. V. Suchkova

Irkutsk State University, Research Institute of Oil and Coal Chemical Synthesis

Email: suslov@chem.isu.ru
Russian Federation, K. Marksa st., 1, Irkutsk, 664003

P. A. Abramov

Nikolaev Institute of Inorganic Chemistry SB RAS

Email: suslov@chem.isu.ru
Russian Federation, Akad. Lavrentieva ave., 3, Novosibirsk, 630090

References

  1. Alentiev D.A., Bermeshev M. V. // Polym. Rev. 2022. V. 62. № 2. P. 400.
  2. Финкельштейн Е.Ш., Бермешев М. В., Грингольц М. Л., Старанникова Л. Э., Ямпольский Ю. П. // Успехи химии. 2011. T. 80. № 4. С. 362. (Finkelshtein E. S., Bermeshev M. V., Gringolts M. L., Starannikova L. E., Yampolskii Y. P. // Russ. Chem. Rev. 2011. V. 80. № 4. P. 341.)
  3. Флид В.Р., Грингольц М. Л., Шамсиев Р. С., Финкельштейн Е. Ш. // Успехи химии. 2018. Т. 87. № 12. С. 1169. (Flid V. R., Gringolts M. L., Shamsiev R. S., Finkelshtein E. Sh. // Russ. Chem. Rev. 2018. V. 87. № 12. P. 1169.)
  4. Bermeshev M.V., Chapala P. P. // Prog. Polym. Sci. 2018. V. 84. P. 1.
  5. Суслов Д.С., Быков М. В., Кравченко О. В. // Высокомолекулярные соединения. Серия С. 2019. T. 61. № 1. С. 122. (Suslov D. S., Bykov M. V., Kravchenko O. V. // Polym. Sci. Ser. C. 2019. V. 61. № 1. P. 145.)
  6. Janiak C., Lassahn P. G. // J. Mol. Catal. Chem. Elsevier. 2001. V. 166. № 2. P. 193.
  7. Blank F., Janiak C. // Coord. Chem. Rev. 2009. V. 253. № 7–8. P. 827.
  8. Schrock R.R. // Acc. Chem. Res. 1990. V. 23. № 5. P. 158.
  9. Adzhieva O.A., Gringolts M. L., Denisova Y. I., Shandryuk G. A., Litmanovich E. A., Nikiforov R. Yu., Belov N. A., Kudryavtsev Y. V. // Polymers. 2023. V. 15. № 9. P. 2157.
  10. Gringolts M.L., Denisova Y. I., Finkelshtein E. S., Kudryavtsev Y. V. // Beilstein J. Org. Chem. 2019. V. 15. P. 218.
  11. Jang E.S., John J. M., Schrock R. R. // J. Am. Chem. Soc. 2017. V. 139. № 14. P. 5043.
  12. Vougioukalakis G.C., Grubbs R. H. // Chem. Rev. 2010. V. 110. № 3. P. 1746.
  13. Ogba O.M., Warner N. C., O’Leary D.J., Grubbs R. H. // Chem. Soc. Rev. 2018. V. 47. № 12. P. 4510.
  14. Grubbs R.H. // Angew. Chem. Int. Ed. 2006. V. 45. № 23. P. 3760.
  15. Garber S.B., Kingsbury J. S., Gray B. L., Hoveyda A. H. // J. Am. Chem. Soc. 2000. V. 122. № 34. P. 8168.
  16. Mikus M.S., Torker S., Hoveyda A. H. // Angew. Chem. Int. Ed. 2016. V. 55. № 16. P. 4997.
  17. Finkelshtein E., Gringolts M., Bermeshev M., Chapala P., Rogan Y. Polynorbornenes / Membrane Materials for Gas and Vapor Separation. Eds. Yampolskii Y., Finkelshtein E. Chichester, UK: John Wiley & Sons, Ltd., 2017. P. 143.
  18. Karpov G.O., Bermeshev M. V. // Dokl. Chem. 2020. V. 495. № 2. P. 195.
  19. Kaminsky W. Polyolefins: 50 years after Ziegler and Natta II Polyolefins by Metallocenes and Other Single-Site Catalysts / Advances in Polymer Science. 2013. V. 258.
  20. Bermesheva E.V., Medentseva E. I., Khrychikova A. P., Wozniak A. I., Guseva M. A., Nazarov I. V., Morontsev A. A., Karpov G. O., Topchiy M. A., Asachenko A. F., Danshina A. A., Nelyubina Y. V., Bermeshev M. V. // ACS Catal. 2022. V. 12. № 24. P. 15076.
  21. Hennis A.D., Polley J. D., Long G. S., Sen A., Yandulov D., Lipian J., Benedikt G. M., Rhodes L. F., Huffman J. // Organometallics. 2001. V. 20. № 13. P. 2802.
  22. Yamashita M., Takamiya I., Jin K., Nozaki K. // Organometallics. 2006. V. 25. № 19. P. 4588.
  23. Kim D.-G., Bell A., Register R. A. // ACS Macro Lett. 2015. V. 4. № 3. P. 327.
  24. Walter M.D., White P. S., Brookhart M. S. // Chem. Commun. 2009. № 42. P. 6361.
  25. Walter M.D., Moorhouse R. A., Urbin S. A., White P. S., Brookhart M. S., Carolina N. // J. Am. Chem. Soc. 2009. V. 131. № 25. P. 9055.
  26. Goodall B. L. Late Transition Metal Catalysts for the Copolymerization of Olefins and Polar Monomers / In: Topics in Organometallic Chemistry, 2009. V. 26. P. 159.
  27. Pérez-Ortega I., Albéniz A. C. // Polym. Chem. 2022. V. 13. № 28. P. 4154.
  28. Bermesheva E.V., Wozniak A. I., Bermeshev M. V., Asachenko A. F., Topchiy M. A., Nechaev M. S., Filatova M. P., Khrychikova A. P. // Polym. Sci. Ser. B. 2020. V.62. № 4. P. 319.
  29. Bermesheva E.V., Wozniak A. I., Andreyanov F. A., Karpov G. O., Nechaev M. S., Asachenko A. F., Topchiy M. A., Melnikova E. K., Nelyubina Y. V., Gribanov P. S., Bermeshev M. V. // ACS Catal. 2020. V. 10. № 3. P. 1663.
  30. Blank F., Vieth J. K., Ruiz J., Rodríguez V., Janiak C. // J. Organomet. Chem. 2011. V. 696. № 2. P. 473.
  31. Kaita S., Matsushita K., Tobita M., Maruyama Y., Wakatsuki Y. // Macromol. Rapid Commun. 2006. V. 27. № 20. P. 1752.
  32. Suslov D.S., Bykov M. V., Pakhomova M. V., Orlov T. S., Abramov Z. D., Suchkova A. V., Ushakov I. A., Abramov P. A., Novikov A. S. // Molecules. 2023. V. 28. № 10. P. 4141.
  33. Yoshida I., Kobayashi H., Ueno K. // J. Inorg. Nucl. Chem. 1973. V. 35. № 12. P. 4061.
  34. Suslov D.S., Bykov M. V., Abramov P. A., Pahomova M. V., Ushakov I. A., Voronov V. K., Tkach V. S. // RSC Adv. 2015. V. 5. № 126. P. 104467.
  35. Suslov D.S., Bykov M. V., Belova M. V., Abramov P. A., Tkach V. S. // J. Organomet. Chem. 2014. V. 752. P. 37.
  36. Suslov D.S., Bykov M. V., Pakhomova M. V., Abramov P. A., Ushakov I. A., Tkach V. S. // Catal. Commun. 2017. V. 94. P. 69.
  37. Suslov D.S., Bykov M. V., Pakhomova M. V., Abramov Z. D., Ratovskii G. V., Ushakov I. A., Borodina T. N., Smirnov V. I., Tkach V. S. // J. Mol. Struct. 2020. V. 1217. P. 128425.
  38. Suslov D.S., Bykov M. V., Abramov Z. D., Ushakov I. A., Borodina T. N., Smirnov V. I., Ratovskii G. V., Tkach V. S. // J. Organomet. Chem. 2020. V. 923. P. 121413.
  39. Bergstrom C., Koskinen J., Halme E., Lindstrom M., Perala M. Patent US6294706, 2003.
  40. Chun S.H., Kim W.-K., Yoon S.-C., Kim K.-H., Lee J.-M., Paik K.-L., Ahn S.-D. Patent USA 7442752, 2003.
  41. Suslov D.S., Bykov M. V., Kuzmin A. V., Abramov P. A., Kravchenko O. V., Pakhomova M. V., Rokhin A. V., Ushakov I. A., Tkach V. S. // Catal. Commun. 2018. V. 106. P. 30.
  42. Mathew J.P., Reinmuth A., Melia J., Swords N., Risse W. // Macromolecules. 1996. V. 29. № 8. P. 2755.
  43. Delpech M.C., Coutinho F. M.B., Habibe M. E.S. // Polym. Test. 2002. V. 21. P. 411.
  44. Yao Z., Liu S., Lv F., Cao K. // J. Appl. Polym. Sci. 2008. V. 109. № 6. P. 4010.
  45. Patil A.O., Zushma S., Stibrany R. T., Rucker S. P., Wheeler L. M. // J. Polym. Sci. Part Polym. Chem. 2003. V. 41. № 13. P. 2095.
  46. Sheldrick G.M. // Acta Crystallogr. Sect. А. Found. Adv. 2015. V. A71. № 1. P. 3.https://doi.org/10.1107/S2053273314026370
  47. Sheldrick G.M. // Acta Crystallogr. Sect. C Struct. Chem. 2015. V. C71. № 1. P. 3.https://doi.org/10.1107/S2053229614024218
  48. Hübschle C.B., Sheldrick G. M., Dittrich B. // J. Appl. Crystallogr. 2011. V. 44. № 6. P. 1281.
  49. Coville N.J., Du Plooy K. E. // Inorg. Chim. Acta. 1993. V. 209. № 1. P. 5.
  50. Cross R.J., Hoyle R. W., Kennedy A. R., Manojlović-Muir L., Muir K. W. // J. Organomet. Chem. 1994. V. 468. № 1–2. P. 265.
  51. Manojlović-Muir L., Cross R. J., Hoyle R. W. // Acta Crystallogr. C. 1993. V. 49. № 9. P. 1603.
  52. Bachechi F., Lehmann R., Venanzi L. M. // J. Crystallogr. Spectrosc. Res. 1988. V. 18. № 6. P. 721.
  53. Meijboom R., Muller A. // Acta Crystallogr. Sect. E. Struct. Rep. Online. 2006. V. 62. № 10. P. m2642.
  54. Быков М.В., Абрамов З. Д., Орлов Т. С., Пахомова М. В., Бородина Т. Н., Смирнов В. И., Суслов Д. С. // Журнал структурной химии. 2021. Т. 62. № 8. С. 1305. (Bykov M. V., Abramov Z. D., Orlov T. S., Pakhomova M. V., Borodina T. N., Smirnov V. I., Suslov D. S. // J. Struct. Chem. 2021. V. 62. № 8. P. 1218.)
  55. Janiak C., Lange K. C.H., Versteeg U., Lentz D., Budzelaar P. H.M. // Chem. Ber. 1996. V. 129. № 12. P. 1517.
  56. Ackermann M., Pascariu A., Höcher T., Siehl H. U., Berger S. // J. Am. Chem. Soc. 2006. V. 128. № 26. P. 8434.
  57. Tolman C.A. // Chem. Rev. 1977. V. 77. № 3. P. 313.
  58. Tolman C.A. // J. Am. Chem. Soc. 1970. V. 92. № 10. P. 2953.
  59. Hirsivaara L., Guerricabeitia L., Haukka M., Suomalainen P., Laitinen R. H., Pakkanen T. A., Pursiainen J. // Inorg. Chim. Acta. 2000. V. 307. № 1–2. P. 48.
  60. Andersen N.G., Keay B. A. // Chem. Rev. 2001. V. 101. № 4. P. 997.
  61. Lassahn P., Lozan V., Wu B., Weller A. S., Janiak C. // Dalton Trans. 2003. № 23. P. 4437.
  62. van Leeuwen P. W.N.M., Kamer P. C.J., Reek J. N.H., Dierkes P. // Chem. Rev. 2000. V. 100. № 8. P. 2741.
  63. van Haaren R. J., Goubitz K., Fraanje J., van Strijdonck G. P.F., Oevering H., Coussens B., Reek J. N.H., Kamer P. C.J., van Leeuwen P. W.N.M. // Inorg. Chem. 2001. V. 40. № 14. P. 3363.
  64. Mi X., Ma Z., Cui N., Wang L., Ke Y., Hu Y. // J. Appl. Polym. Sci. 2003. V. 88. № 14. P. 3273.
  65. Kim K.H., Han Y.-K., Lee S. U., Chun S.-H., Ok J. H. // J. Mol. Model. 2003. V. 9. № 5. P. 304.
  66. Müller T.E., Mingos D. M.P. // Transit. Met. Chem. 1995. V. 20. № 6. P. 533.
  67. Batsanov S.S. // Inorg. Mater. 2001. V. 37. № 9. P. 871.
  68. Alvarez S. // Dalton Trans. 2013. V. 42. № 24. P. 8617.
  69. Commarieu B., Claverie J. P. // Chem Sci. RSC. 2015. V. 6. № 4. P. 2172.
  70. Huang R., He X., Chen Y., Nie H., Zhou W. // Polym. Adv. Technol. 2012. V. 23. № 3. P. 483.
  71. Morishita H., Sudo A., Endo T. // J. Polym. Sci. Part Polym. Chem. 2009. V. 47. № 16. P. 3982.
  72. Park J.H., Yun C., Park M. H., Do Y., Yoo S., Lee M. H. // Macromolecules. 2009. V. 42. № 18. P. 6840.
  73. Saito T., Wakatsuki Y. // Polymer. 2012. V. 53. № 2. P. 308.
  74. Takamiya I., Yamashita M., Nozaki K. // Organometallics. 2008. V. 27. № 20. P. 5347.
  75. Xing Y., Chen Y., He X. // J. Polym. Sci. Part Polym. Chem. 2011. V. 49. № 20. P. 4425.
  76. Chen L., Zhong Z., Chen C., He X., Chen Y. // J. Organomet. Chem. 2014. V. 752. P. 100.
  77. Bennett M.J., Cotton F. A., Davison A., Faller J. W., Lippard S. J., Morehouse S. M. // J. Am. Chem. Soc. 1966. V. 88. № 19. P. 4371.
  78. Radius U., Sundermeyer J., Peters K., Von Schnering H.-G. // Eur. J. Inorg. Chem. 2001. V. 2001. № 6. P. 1617.
  79. Werner H., Kraus H.-J. // Angew. Chem. Int. Ed. Engl. 1979. V. 18. № 12. P. 948.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1.

Download (74KB)
3. Scheme 2

Download (206KB)
4. Fig.1

Download (309KB)
5. Fig.2

Download (104KB)
6. Fig.3

Download (170KB)
7. Fig.4

Download (82KB)
8. Scheme 3

Download (51KB)
9. Fig.5

Download (181KB)
10. Fig.6

Download (101KB)
11. Fig.7

Download (452KB)
12. Scheme 4

Download (170KB)
13. Fig.8

Download (148KB)


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies