Prospects of Using Ruthenium within the Composition of Three-Way Palladium–Rhodium Catalysts

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The possibility of using ruthenium within the composition of palladium-rhodium catalysts used to neutralize the exhaust gases of vehicles with gasoline engines was investigated. Thermolysis of the supported precursor in oxidizing and reducing media leads to the formation of samples with different initial catalytic activity. Stability of trimetallic systems is compared under conditions of prompt thermal aging with reference samples of similar chemical composition, but obtained by mechanical mixing of monometallic catalysts. The obtained results allow one to conclude that the alloy nanoparticles are more stable, and the thermolysis of the precursor in the reducing medium contributes to a higher initial activity of the catalyst in the oxidation of CO. According to the X-ray photoelectron spectroscopy method, the high thermal stability of trimetallic catalysts is due to the constant ratio of metals on the surface of the support during the catalytic reaction.

Sobre autores

Y. Shubin

Nikolaev Institute of Inorganic Chemistry SB RAS

Email: vedyagin@catalysis.ru
Russia, 630090, Novosibirsk, ave. Ac. Lavrentieva, 3

P. Plyusnin

Nikolaev Institute of Inorganic Chemistry SB RAS

Email: vedyagin@catalysis.ru
Russia, 630090, Novosibirsk, ave. Ac. Lavrentieva, 3

R. Kenzhin

Boreskov Institute of Catalysis

Email: vedyagin@catalysis.ru
Russia, 630090, Novosibirsk, ave. Ac. Lavrentieva, 5

A. Vedyagin

Boreskov Institute of Catalysis

Autor responsável pela correspondência
Email: vedyagin@catalysis.ru
Russia, 630090, Novosibirsk, ave. Ac. Lavrentieva, 5

Bibliografia

  1. Kašpar J., Fornasiero P., Hickey N. // Catal. Today. 2003. V. 77. P. 419.
  2. Shelef M., Graham G.W. // Catal. Rev. 2006. V. 36. P. 433.
  3. Birgersson H., Boutonnet M., Jaras S., Eriksson L. // Top. Catal. 2004. V. 30. P. 433.
  4. Vedyagin A.A., Shubin Y.V., Kenzhin R.M., Plyusnin P.E., Stoyanovskii V.O., Volodin A.M. // Top. Catal. 2018. V. 62. P. 305.
  5. Kostin G.A., Plyusnin P.E., Filatov E.Y., Kuratieva N.V., Vedyagin A.A., Kal’nyi D.B. // Polyhedron. 2019. V. 159. P. 217.
  6. Зибарева И.В., Ведягин А.А., Бухтияров В.И. // Кинетика и катализ. 2014. Т. 55. № 1. С. 3. (Zibareva I.V., Vedyagin A.A., Bukhtiyarov V.I. // Kinet. Catal. 2014. V. 55. № 1. P. 1.)
  7. Samed A.J., Yamamoto Y., Hidaka M., Hinokuma S., Machida M. // Catal. Commun. 2017. V. 91. P. 6.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (59KB)


Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies