Carbon Catalyst Support Modification by Nitrogen Via Nitric Oxide Treatment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the present work the method of carbon material Sibunit modification by the NO treatment under static reactor condition is proposed. It is shown that the composition and amount of nitrogen- and oxygen-contained functional groups is determined by the treatment conditions (temperature, duration), which allows controlling the result of the modification. The process of Sibunit modification by NO is studied by XPS and N2 adsorption. The mechanism of Sibunit modification as the carbon layers etching by NO through the conversion of oxygen-contained functional groups into NOx-groups (–NO and –NO2) and further into pyridic and pyrrolic nitrogen-contained groups is assumed. Developed procedure of nitrogen introduction into carbon material is simple for realization, that is important for practical applications.

About the authors

А. V. Nartova

Boreskov Institute of Catalysis SB RAS

Author for correspondence.
Email: nartova@catalysis.ru
Russia, 630090, Novosibirsk, Lavrentiev Ave. 5

A. A. Ananina

Boreskov Institute of Catalysis SB RAS

Email: nartova@catalysis.ru
Russia, 630090, Novosibirsk, Lavrentiev Ave. 5

S. V. Semikolenov

Boreskov Institute of Catalysis SB RAS

Email: nartova@catalysis.ru
Russia, 630090, Novosibirsk, Lavrentiev Ave. 5

A. М. Dmitrachkov

Boreskov Institute of Catalysis SB RAS

Email: nartova@catalysis.ru
Russia, 630090, Novosibirsk, Lavrentiev Ave. 5

R. I. Kvon

Boreskov Institute of Catalysis SB RAS

Email: nartova@catalysis.ru
Russia, 630090, Novosibirsk, Lavrentiev Ave. 5

V. I. Bukhtiyarov

Boreskov Institute of Catalysis SB RAS

Email: nartova@catalysis.ru
Russia, 630090, Novosibirsk, Lavrentiev Ave. 5

References

  1. Serp P., Machado B. Nanostructured Carbon Materials for Catalysis, RSC: Cambridge. 2015. V. 23. P. 1.
  2. Nartova A.V., Kovtunova L.M., Khudorozhkov A.K., Shefer K.I., Shterk G.V., Kvon R.I., Bukhtiyarov V.I. // Appl. Catal. A: Gen. 2018. V. 566. P. 174.
  3. Dmitrachkov A.M., Kvon R.I., Nartova A.V. // Appl. Surf. Sci. 2021. V. 566. P. 150631.
  4. Zhou Y., Neyerlin K., Olson T.S., Pylypenko S., Bult J., Dinh H.N., O’Hayre R. // Energy Environ. Sci. 2010. № 3. P. 1437.
  5. Ramli Z.A.C., Kamarudin S.K. // Nanoscale Res. Lett. 2018. V. 13. P. 410.
  6. Mirabile Gattia D., Antisari M.V., Giorgi L., Marazzi R., Piscopiello E., Montone A., Bellitto S., Licoccia S., Traversa E. // J. Power Sources. 2009. V. 194. P. 243.
  7. Figueiredo J.L., Pereira M.F.R. Carbon Materials for Catalysis. John Wiley & Sons, Inc., 2008. P. 177.
  8. Пахомов Н.А. Научные основы приготовления катализаторов: введение в теорию и практику. Новосибирск: Изд-во СО РАН, 2011. 262 с.
  9. Plaskin V., Baklanova O.N., Lavrenov A.V., Likholobov V.A. // Solid Fuel Chem. 2014. V. 48. № 6. P. 349.
  10. Плаксин Г.В., Бакланова О.Н., Лавренов А.В., Лихолобов В.А. // Химия твердого топлива. 2014. Т. 48. № 6. С. 349.
  11. Фенелонов В.Б. Пористый углерод. Новосибирск: Ин-т катализа СО РАН, 1995. 301 с.
  12. Godina L.I., Kirilin A.V., Tokarev A.V., Simakova I.L., Murzin D.Y. // Ind. Eng. Chem. Res. 2018. V. 57. № 6. P. 2050.
  13. Simakova O.A., Simonov P.A., Romanenko A.V., Simakova I.L. // React. Kinet. Catal. Lett. 2008. V. 95. № 1. P. 3.
  14. Cermignani W., Paulson T.E., Onneby C., Pantano C.G. // Carbon. 1995. V. 33. № 4. P. 367.
  15. Nie R., Bo X., Luhana C., Nsabimana A., Guo L. // Int. J. Hydrogen Energy. 2014. V. 39. № 24. P. 12597.
  16. Yang Z., Yao Z., Li G., Fang G., Nie H., Liu Z., Zhou X., Chen X., Huang S. // ACS Nano. 2012. V. 6. № 1. P. 205.
  17. Чесноков В.В., Лисицын А.С., Соболев В.И., Герасимов Е.Ю., Просвирин И.П., Чесалов Ю.А., Чичкань А.С., Подъячева О.Ю. // Кинетика и катализ. 2021. Т. 62. № 4. С. 472.
  18. Суслова Е.В., Савилов С.В., Егоров А.В., Лунин В.В. // Кинетика и катализ. 2019. Т. 60. № 1. С. 108.
  19. Субоч А.Н., Евтушок В.Ю., Кибис Л.С., Холдеева О.А., Подъячева О.Ю. // Кинетика и катализ. 2021. Т. 62. № 2. С. 233.
  20. Wang H., Maiyalagan T., Wang X. // ACS Catal. 2012. V. 2. № 5. P. 781.
  21. Droppa R., Hammer P., Carvalho A.C.M., Alvarez dos Santos M.C. // J. Non-Crystalline Solids. 2002. V. 299−302. P. 874.
  22. Favaro M., Agnoli S., Perini L., Durante C., Gennaro A., Granozzi G. // Phys. Chem. Chem. Phys. 2013. V. 15. P. 2923.
  23. Shi W., Wu K.-H., Xu J., Zhang Q., Zhang B., Su D.S. // Chem. Mater. 2017. V. 29. № 20. P. 8670.
  24. Paraknowitsch J.P., Thomas A., Antonietti M. // J. Mater. Chem. 2010. V. 20. P. 6746.
  25. Tuaev X., Paraknowitsch J.P., Illgen R., Thomas A., Strasser P. // Phys. Chem. Chem. Phys. 2012. V. 14. P. 6444.
  26. Brodie B.C. // Ann. Chim. Phys. 1860. V. 59. P. 466.
  27. Hummers W.S., Offeman R.E. // J. Am. Chem. Soc. 1958. V. 80. № 6. P. 1339.
  28. Staudenmaier L. // Berichte Der Deutschen Chemischen Gesellschaft. 1898. V. 31. P. 1481.
  29. Bandosz T.J., Ania C.O. // Activated Carbon Surfaces in Environmental Remediation. Oxford: Elsevier Ltd., 2006. P. 159.
  30. Ayiania M., Smith M., Hensley A.J.R., Scudiero L., McEwen J.-S., Garcia-Perez M. // Carbon. 2020. V. 162. P. 528.
  31. Moulder J.F., Stckle W.F., Sobol P.E., Bomben K.D. Handbook of X-Ray Photoelectron Spectroscopy. Perkin-Elmer, Eden Prairie, MN, 1992. 261 p.
  32. Gregg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity, 2nd ed. Academic Press, 1982. 303 p.
  33. Фенелонов В.Б. Введение в физическую химию формирования супрамолекулярной структуры адсорбентов и катализаторов. Новосибирск: Из-во СО РАН, 2002. 414 с.
  34. Dementjev A.P., de Graaf A., van de Sanden M.C.M., Maslakov K.I., Naumkin A.V., Serov A.A. // Diam. Relat. Mater. 2000. V. 9. № 11. P. 1904.
  35. Ma H.A., Jia X.P., Chen L.X., Zhu P.W., Guo W.L., Guo X.B., Bex P. // J. Phys.: Condens. Matter. 2002. V. 14. P. 11269.
  36. Xu Y., Mo Y.P., Tian J., Wang P., Yu H.G., Yu J.G. // Appl. Catal. B: Env. 2016. V. 181. P. 810.
  37. Kuntumalla M.K., Attrash M., Akhvlediani R., Michaelson S., Hoffman A. // Appl. Surf. Sci. 2020. V. 25. P. 146562.
  38. Sui Y., Zhu B., Zhang H., Shu H., Chen Z., Zhang Y., Liu X. // Carbon. 2015. V. 81. P. 814.
  39. Inagaki M., Toyoda M., Soneda Y., Morishita T. // Carbon. 2018. V. 132. P. 104.
  40. Lindberg B.J., Hedman J. // Chem. Scr. 1975. V. 7. № 4. P. 155.
  41. Chen C.-M., Zhang Q., Yang M.-G., Huang C.-H., Yang Y.-G., Wang M.-Z. // Carbon. 2012. V. 50. P. 3572.
  42. Oh Y.J., Yoo J.J., Kim Y.I., Yoon J.K., Yoon H.N., Kim J.H., Park S.B. // Electrochim. Acta. 2014. V. 116. P. 118.
  43. Folkesson B., Sundberg P. // Spectrosc. Lett. 1987. V. 20. № 3. P. 193.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (241KB)
3.

Download (180KB)
4.

Download (132KB)
5.

Download (141KB)
6.

Download (244KB)


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies