D-CRMP history matching considering predictive properties

Cover Page

Cite item

Full Text

Abstract

The article presents results of tests of software that implements the D-CRMP model. D-CRMP is a version of the analytical capacitance-resistance model (CRM) that is primarily used for waterflood characterization and reservoir management. The difference of D-CRMP lies in its ability to take into account the shut-in periods of production wells during history matching. The optimization problem is solved by means of simulated annealing and sequential least-squares quadratic programming from the SciPy library. The study considers the feature of solving the D-CRMP equation related to the errors in the reservoir liquid production forecast when previously shut-in well starting its production. The selection of the objective function and constraints, which are preferable when using the mentioned algorithms for D-CRMP history matching, is made. A method for choosing the best model is indicated when using an algorithm, which is dependent on pseudorandom number generator. The choice is made taking into account the predictive properties of the models. An approach to calculating confidence intervals based on the F-test is considered in detail. Evaluation of confidence intervals is caried out.

About the authors

N. G. Musakaev

Tyumen Branch of Khristianovich Institute of Theoretical and Applied Mechanics of SB RAS; Industrial University of Tyumen

S. P. Rodionov

Tyumen Branch of Khristianovich Institute of Theoretical and Applied Mechanics of SB RAS

V. I. Lebedev

Tyumen Branch of Khristianovich Institute of Theoretical and Applied Mechanics of SB RAS; Industrial University of Tyumen

Email: vilebedev.72@gmail.com

E. N. Musakaev

Tyumen Branch of Khristianovich Institute of Theoretical and Applied Mechanics of SB RAS; NS Digital LLC

References

  1. Salehian, M. Reservoir Characterization Using Dynamic CapacitanceResistance Model with Application to Shutin and Horizontal Wells / M. Salehian, M. Çınar. – doi: 10.1007/s1320201906554. – Direct text // Journal of Petroleum Exploration and Production Technology. – 2019. – Vol. 9. – P. 2811–2830.
  2. AlYousef, A. A. Investigating Statistical Techniques to Infer Interwell Connectivity from Production and Injection Rate Fluctuations : PhD dissertation / A. A. AlYousef. – Austin : University of Texas, 2006. – 540 p. – Direct text.
  3. StateoftheArt Literature Review on Capacitance Resistance Models for Reservoir Characterization and Performance Forecasting / R. W. Holanda, E. Gildin, J. L. Jensen. – doi: 10.3390/en11123368. – Direct text // Energies. – 2018. – Vol. 11, Issue 12. – P. 33–68.
  4. Сопровождение разработки нефтяных месторождений с использованием моделей CRM : монография / С. В. Степанов, А. Д. Бекман, А. А. Ручкин, Т. А. Поспелова. – Текст : непосредственный. – Тюмень : ИПЦ «Экспресс», 2021. – 300 с.
  5. Мусакаев, Э. Н. Эффективное решение задач идентификации моделей пластовых систем и управления заводнением нефтяных месторождений : специальность 05.13.18 «Математическое моделирование, численные методы и комплексы программ» : диссертация на соискание ученой степени канд. техн. наук / Мусакаев Эмиль Наильевич ; Российский государственный университет нефти и газа им. И.М. Губкина. – Москва, 2021. – 111 с. – Текст : непосредственный.
  6. Tsallis, C. Generalized Simulated Annealing / C. Tsallis, D. A. Stariolo. – doi: 10.1016/S03784371(96)002713. – Direct text // Physica A : Statistical Mechanics and its Applications. – 1996. – Vol. 233. – P. 395–406.
  7. Weber, D. B. The Use of CapacitanceResistance Models to Optimize Injection Allocation and Well Location in Water Floods : PhD dissertation / D. B. Weber. – Austin : University of Texas, 2009. – 275 p. – Direct text.
  8. Bonamente, M. Statistics and Analysis of Scientific Data / M. Bonamente. – doi: 10.1007/9781493965724. – USA : Springer, 2013. – 301 p. – Direct Text.
  9. Ekstrøm, C. T. Introduction to Statistical Data Analysis for the Life Sciences / C. T. Ekstrøm, H. Sørensen. – 2nd edition. – Boka Raton : Taylor & Francis Group, 2015. – 506 p. – Direct Text.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).