ELECTROCHMEICAL SYNTHESIS OF TUNGSTEN OXIDE IN CHLORIDE SOLUTIONS FOR ENVIRONMENTAL PHOTOCATALYSIS

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细


The electrochemical behavior of tungsten in chloride electrolytes with various cationic compositions (Na+, K+, Li+, NH4+) under pulse alternating current has been studied. The decisive influence of the nature of the electrolyte on the phase composition of the resulting dispersed products is shown. The use of NH4Cl ensures the formation of pure crystalline WO3 with a particle size of 30–35 nm. The photoelectrochemical activity of the synthesized WO3 in a sulfuric acid medium under simulated solar radiation has been studied. The addition of glycerol to H2SO4 causes a cathodic shift in the oxidation onset potential by 0.25 V and a threefold increase in the maximum photocurrent density. The possibility of using a WO3/FTO photoanode as part of a flow-through photocatalytic fuel cell (fuel - glycerol, air-breathing Pt/C cathode), characterized by excellent stability in an acidic environment and the maximum power density of 64.0 μW cm-2 is shown.

作者简介

A. Ulyankina

Platov South-Russian State Polytechnic University (NPI)

Email: anya-barbashova@yandex.ru
346428 Novocherkassk, Russia

A. Tsarenko

Platov South-Russian State Polytechnic University (NPI)

Email: anya-barbashova@yandex.ru
346428 Novocherkassk, Russia

T. Molodtsova

Platov South-Russian State Polytechnic University (NPI)

Email: anya-barbashova@yandex.ru
346428 Novocherkassk, Russia

L. Fesenko

Platov South-Russian State Polytechnic University (NPI)

Email: anya-barbashova@yandex.ru
346428 Novocherkassk, Russia

N. Smirnova

Platov South-Russian State Polytechnic University (NPI)

编辑信件的主要联系方式.
Email: anya-barbashova@yandex.ru
346428 Novocherkassk, Russia

参考

  1. Pothu, R., Mameda, N., Boddula, R., Mitta, H., Perugopu, V., and Al-Qahtani, N., Sustainable conversion of biodiesel-waste glycerol to acrolein over Pd-modified mesoporous catalysts, Mater. Sci. for Energy Technol., 2023, vol. 6, p. 226. https://doi.org/10.1016/j.mset.2022.12.012
  2. Kozlova, E.A., Kurenkova, A.Y., Gerasimov, E.Y., Gromov, N.V., Medvedeva, T.B., Saraev, A.A., and Kaichev, V.V., Comparative study of photoreforming of glycerol on Pt/TiO2 and CuOx/TiO2 photocatalysts under UV light, Mater. Lett., 2021, vol. 283, p. 128901. https://doi.org/10.1016/j.matlet.2020.128901
  3. Huang, L.-W., Vo, T.-G., and Chiang, C.-Y., Converting glycerol aqueous solution to hydrogen energy and dihydroxyacetone by the BiVO4 photoelectrochemical cell, Electrochim. Acta, 2019, vol. 322, p. 134725. https://doi.org/10.1016/j.electacta.2019.134725
  4. Tremouli, A., Vlassis, T., Antonopoulou, G., and Lyberatos, G., Anaerobic Degradation of Pure Glycerol for Electricity Generation using a MFC: The Effect of Substrate Concentration, Waste and Biomass Valorization, 2016, vol. 7 (6), p. 1339. https://doi.org/10.1007/s12649-016-9498-0
  5. Nascimento, L.L., Marinho, J.Z., dos Santos, A.L.R., de Faria, A.M., Souza, R.A.C., Wang, C., and Patrocinio, A.O.T., Photoelectrochemical reforming of glycerol by Bi2WO6 photoanodes: Role of the electrolyte pH on the H2 evolution efficiency and product selectivity, Appl. Catal. A: General, 2022, vol. 646, p. 118867. https://doi.org/10.1016/j.apcata.2022.118867
  6. Sui, M., Dong, Y., Bai, W., Ambuchi, J.J., and You, H., In-situ utilization of generated electricity in a photocatalytic fuel cell to enhance pollutant degradation, J. Photochem. and Photobiol. A: Chemistry, 2017, vol. 343, p. 51. https://doi.org/10.1016/j.jphotochem.2017.04.017
  7. Ye, F., Wang, T., Quan, X., Yu, H., and Chen, S., Constructing efficient WO3–FPC system for photoelectrochemical H2O2 production and organic pollutants degradation, Chem. Engineering J., 2020, vol. 389, p. 123427. https://doi.org/10.1016/j.cej.2019.123427
  8. Shandilya, P., Sambyal, S., Sharma, R., Mandyal, P., and Fang, B., Properties, optimized morphologies, and advanced strategies for photocatalytic applications of WO3 based photocatalysts, J. Hazardous Mater., 2022, vol. 428, p. 128218. https://doi.org/10.1016/j.jhazmat.2022.128218
  9. Abbaspoor, M., Aliannezhadi, M., and Tehrani, F.S., Effect of solution pH on as-synthesized and calcined WO3 nanoparticles synthesized using sol–gel method, Optical Mater., 2021, vol. 121, p. 111552. https://doi.org/10.1016/j.optmat.2021.111552
  10. Karthikeyan, S., Selvapandiyan, M., Sasikumar, P., Parthibavaraman, M., Nithiyanantham, S., and Srisuvetha, V.T., Investigation on the properties of vanadium doping WO3 nanostructures by hydrothermal method, Mater. Sci. for Energy Technol., 2022, vol. 5, p. 411. https://doi.org/10.1016/j.mset.2022.10.002
  11. Бхагьяшри, Б., Таваде, А.К., Камбл, П., Падави, М.Н., Шарма, К.К.К., Аджалкар, Б.Д., Тайаде, Ш.Н. Гидротермальный синтез WO3 для электрохимического окисления парацетамола: микроструктурированный датчик парацетамола. Электрохимия. 2020. Т. 56. С. 844. https://doi.org/10.31857/S0424857020050047
  12. Kromer, M.L., Monzó, J., Lawrence, M.J., Kolodziej, A., Gossage, Z.T., Simpson, B.H., Morandi, S., Yanson, A., Rodríguez-López, J., and Rodríguez, P., High-Throughput Preparation of Metal Oxide Nanocrystals by Cathodic Corrosion and Their Use as Active Photocatalysts, Langmuir, 2017, vol. 33 (46), p. 13295. https://doi.org/10.1021/acs.langmuir.7b02465
  13. Gao, D., Li, H., Wei, P., Wang, Y., Wang, G., and Bao, X., Electrochemical synthesis of catalytic materials for energy catalysis, Chinese J. Catalysis, 2022, vol. 43 (4), p. 1001. https://doi.org/10.1016/S1872-2067(21)63940-2
  14. Lawrence, M.J., Kolodziej, A., and Rodriguez, P., Controllable synthesis of nanostructured metal oxide and oxyhydroxide materials via electrochemical methods, Current Opinion in Electrochem., 2018, vol. 10, p. 7. https://doi.org/10.1016/j.coelec.2018.03.014
  15. Ulyankina, A., Molodtsova, T., Gorshenkov, M., Leontyev, I., Zhigunov, D., Konstantinova, E., Lastovina, T., Tolasz, J., Henych, J., Licciardello, N., Cuniberti, G., and Smirnova, N., Photocatalytic degradation of ciprofloxacin in water at nano-ZnO prepared by pulse alternating current electrochemical synthesis, J. Water Process Engineering, 2021, vol. 40, p. 101809. https://doi.org/10.1016/j.jwpe.2020.101809
  16. Molodtsova, T., Gorshenkov, M., Kubrin, S., Saraev, A., Ulyankina, A., and Smirnova, N., One-step access to bifunctional γ-Fe2O3/δ-FeOOH electrocatalyst for oxygen reduction reaction and acetaminophen sensing, J. Taiwan Institute of Chem. Engineers, 2022, vol. 140, p. 104569. https://doi.org/10.1016/j.jtice.2022.104569
  17. Molodtsova, T., Gorshenkov, M., Kolesnikov, E., Leontyev, I., Kaichev, V., Zhigunov, D., Faddeev, N., Kuriganova, A., and Smirnova, N., Fabrication of nano-In2O3 phase junction by pulse alternating current synthesis for enhanced photoelectrochemical performance: Unravelling the role of synthetic conditions, Ceram. Intern., 2023, vol. 49 (7), p. 10986. https://doi.org/10.1016/j.ceramint.2022.11.293
  18. Tsarenko, A., Gorshenkov, M., Yatsenko, A., Zhigunov, D., Butova, V., Kaichev, V., and Ulyankina, A., Electrochemical Synthesis-Dependent Photoelectrochemical Properties of Tungsten Oxide Powders, ChemEngineering, 2022, vol. 6 (2), p. 31.
  19. Bourdin, M., Gaudon, M., Weill, F., Duttine, M., Gayot, M., Messaddeq, Y., and Cardinal, T., Nanoparticles (NPs) of WO(3 – x) Compounds by Polyol Route with Enhanced Photochromic Properties, Nanomaterials (Basel), 2019, vol. 9 (11). https://doi.org/10.3390/nano9111555
  20. Xu, J., Xu, X., Yi, H., Lv, Y., Xu, N., He, L., Chen, J., Kuang, X., and Huang, K., Electrical Properties, Defect Structures, and Ionic Conducting Mechanisms in Alkali Tungstate Li2W2O7, Inorganic Chem., 2021, vol. 60 (12), p. 8631. https://doi.org/10.1021/acs.inorgchem.1c00609
  21. Akihiko, K. and Hideki, K., Photocatalytic Activities of Na2W4O13 with Layered Structure, Chem. Lett., 1997, vol. 26 (5), p. 421. https://doi.org/10.1246/cl.1997.421
  22. Lee, S., Teshima, K., Fujisawa, M., Fujii, S., Endo, M., and Oishi, S., Fabrication of highly ordered, macroporous Na2W4O13 arrays by spray pyrolysis using polystyrene colloidal crystals as templates, Phys. Chem. Chem. Phys., 2009, vol. 11 (19), p. 3628. https://doi.org/10.1039/B821209K
  23. Kumar, P., Singh, M., and Reddy, G.B., Core–Shell WO3–WS2 Nanostructured Thin Films via Plasma Assisted Sublimation and Sulfurization, ACS Appl. Nano Mater., 2019, vol. 2 (3), p. 1691. https://doi.org/10.1021/acsanm.9b00136
  24. Hu, Z., Zhang, H., Zhang, L., Cheng, C., and Man, J., Rapid and highly sensitive detection of formaldehyde at room temperature using rGO/WO3 nanocomposite, Appl. Phys. A, 2023, vol. 129 (2), p. 89. https://doi.org/10.1007/s00339-022-06375-2
  25. Ng, C., Ng, Y.H., Iwase, A., and Amal, R., Influence of Annealing Temperature of WO3 in Photoelectrochemical Conversion and Energy Storage for Water Splitting, ACS Appl. Mater. & Interfaces, 2013, vol. 5 (11), p. 5269. https://doi.org/10.1021/am401112q
  26. Kalamaras, E. and Lianos, P., Current Doubling effect revisited: Current multiplication in a PhotoFuelCell, J. Electroanal. Chem., 2015, vol. 751, p. 37. https://doi.org/10.1016/j.jelechem.2015.05.029
  27. Ibadurrohman, M. and Hellgardt, K., Photoelectrochemical performance of graphene-modified TiO2 photoanodes in the presence of glycerol as a hole scavenger, Intern. J. Hydrogen Energy, 2014, vol. 39 (32), p. 18204. https://doi.org/10.1016/j.ijhydene.2014.08.142
  28. Lui, G., Jiang, G., Fowler, M., Yu, A., and Chen, Z., A high performance wastewater-fed flow-photocatalytic fuel cell, J. Power Sources, 2019, vol. 425, p. 69. https://doi.org/10.1016/j.jpowsour.2019.03.091
  29. Pan, D., Xiao, S., Chen, X., Li, R., Cao, Y., Zhang, D., Pu, S., Li, Z., Li, G., and Li, H., Efficient Photocatalytic Fuel Cell via Simultaneous Visible-Photoelectrocatalytic Degradation and Electricity Generation on a Porous Coral-like WO3/W Photoelectrode, Environmental Sci. & Technol., 2019, vol. 53 (7), p. 3697. https://doi.org/10.1021/acs.est.8b05685

补充文件

附件文件
动作
1. JATS XML
2.

下载 (167KB)
3.

下载 (907KB)
4.

下载 (460KB)

版权所有 © А.А. Ульянкина, А.Д. Царенко, Т.А. Молодцова, Л.Н. Фесенко, Н.В. Смирнова, 2023

##common.cookie##