EXTRACTION AND SEPARATION OF COPPER AND ZINC FROM METALLURGICAL DUSTS AND SLAGS OF BRASS PRODUCTION BY ELECTROCHEMICAL AND EXTRACTION METHODS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An analysis of the composition of brass metallurgical waste was carried out using X-ray fluorescence analysis (XRF). The results showed that the copper content in the slag reaches 15 wt. %, and the zinc content – 83 wt. %. Sulfuric acid leaching was performed to separate zinc from the metallurgical dust. Optimal process parameters were selected: leaching duration – 60 minutes, sulfuric acid concentration – 0.1 M. After sulfuric acid leaching, the acid solution was subjected to electrochemical treatment to recover copper and zinc, and the copper cake (copper in unoxidized form) was subjected to copper-ammonia leaching for 40 minutes. The concentration of copper in the copper-ammonia solution reached 35 g/L. At the final stage, solvent extraction of copper from the copper-ammonia leach solutions was carried out, for which the most effective extractant was selected. Extractants of different nature and classes were studied: D2EHPA (a strong acidic organophosphorus extractant), DХ510А and LIX54 (belonging to the class of β-diketones). The concentration of extractants ranged from 50 to 100%, the diluent was kerosene. Copper stripping from the copper-ammonia extract was performed using 2M sulfuric acid. The best extractant was found to be LIX54 at 50% concentration in kerosene. The final stage was copper electrowinning from the stripping solutions at a current density of 3 A/dm2, with a current efficiency of 65%. Based on the conducted research, a process flowsheet was developed for the recovery of copper and zinc from brass metallurgical dust.

About the authors

I. S Maksimov

D. I. Mendeleyev University of Chemical Technology of Russia

Email: vanyamaks@mail.ru
Moscow, Russian Federation

V. A Brodskyа

D. I. Mendeleyev University of Chemical Technology of Russia

Email: vanyamaks@mail.ru
Moscow, Russian Federation

A. R Yavorsky

D. I. Mendeleyev University of Chemical Technology of Russia

Author for correspondence.
Email: vanyamaks@mail.ru
Moscow, Russian Federation

References

  1. Sanchez, M., Parada, F., Parra, R., Marquez, F., Jara, R., Carrasco, J.C., and Palacios, J., Management of copper pyrometallurgical slags: giving additional value to copper mining industry, VII International Conference on Molten Slags Fluxes and Salts, Chile, 2004, p. 543–550.
  2. Sanchez, M. and Sudbury, M., Reutilisation of primary metallurgical wastes: copper slag as a source of copper, molybdenum, and iron – brief review of test work and the proposed way forward. 3rd International Slag Valorisation Symposium, Leuven, 2013, p. 135–146.
  3. Davenport, W.G., King, M., Schlesinger, M., and Biswas, A.K., Extractive metallurgy of copper, Oxford: Pergamon, 2002, 434 p.
  4. Набойченко, С.С. Процессы и аппараты цветной металлургии, Екатеринбург: ГОУ ВПО УГТУ УПИ, 2005. 700 с. [Naboichenko, S.S. Processes and Apparatuses of Non-Ferrous Metallurgy (in Russian), Yekaterinburg: USTU-UPI, 2005, 700 p.]
  5. Стеблевская, Н.И., Медоков, М.А., Белобелецкая, М.В., Смольков, А.А., Молчанов, В.П. Жидкостная экстракция в гидрометаллургии получения неорганических материалов. Вестник ДВО РАН. 2006. № 5. C. 38. [Steblevskaya, N.I., Medokov, M.A., Belobeletskaya, M.V., Smolkov, A.A., and Molchanov, V.P., Liquid extraction in hydrometallurgy of inorganic materials, Vestnik DVO RAN (in Russian), 2006, no. 5, p. 38.]
  6. Кузнецов, В.В., Борисов, А.В., Сидоров, С.Г. Технологические аспекты переработки медно-цинковых шлаков. Изв. вузов. Цветная металлургия. 2017. Т. 60. № 3. С. 45. doi: 10.17073/0021-3438-2017-3-45-50. [Kuznetsov, V.V., Borisov, A.V., and Sidorov, S.G., Technological aspects of copper-zinc slag processing, Izvestiya Vuzov. Tsvetnaya Metallurgiya (in Russian), 2017, vol. 60, no. 3, p. 45.]
  7. Князев, С.Е., Пономарев, Д.А., Иванов, В.В. Анализ возможностей переработки медных шлаков методом аммонийного выщелачивания. Цветная металлургия. 2019. № 8. С. 38. doi: 10.17580/tsm.2019.08.08. [Knyazev, S.E., Ponomarev, D.A., and Ivanov, V.V., Analysis of the possibilities of processing copper slags by ammonium leaching, Tsvetnaya Metallurgiya (in Russian), 2019, no. 8, p. 38.]
  8. Kuang, S., Zhang, Z., Li, Y., Wei, H., and Liao, W., Synergistic extraction and separation of rare earths from chloride medium by the mixture of РУРAPP and D2EHPA, Hydrometallurgy, 2017, vol. 174, p. 78. doi: 10.1016/j.hydromet.2017.06.020
  9. Колесников, В.А., Губин, А.Ф., Кругликов, С.С., Кругликова, Е.С., Некрасова, Н.Е., Тележкина, А.В., Кузнецов, В.В., Филатова, Е.А., Одинокова, И.В. Регенерация раствора травления меди в производстве печатных плат методом мембранного электролиза. Пат. 2677583 (Россия), 2019. [Kolesnikov, V.A., Gubin, A.F., Kruglikov, S.S., Kruglikova, E.S., Nekrasova, N.E., Telezhkina, A.V., Kuznetsov, V.V., Filatova, E.A., and Odinokova, I.V., Regeneration of copper etching solution in the production of printed circuit boards using membrane electrolysis, Pat. 2677583 (Russia), 2019.]
  10. Ильин, В.И., Губин, А.Ф., Перфильева, А.В. Устройство для извлечения ионов меди из аммиачных сред методом мембранной жидкостной экстракции. Пат. 184583 (Россия), 2018. [Ilyin, V.I., Gubin, A.F., and Perfilyeva, A.V. Device for extracting copper ions from ammonia media using membrane liquid extraction method, Pat. 184583 (Russia), 2018.]
  11. Кондратьева, Е.С., Губин, А.Ф., Колесников, В.А. Исследование свойств экстрагента ДХ-510А в процессах извлечения меди из аммиачных травильных растворов. Успехи в химии и хим. технологии. 2012. Т. 26. № 7. С. 105. [Kondratyeva, E.S., Gubin, A.F., and Kolesnikov V.A., Study of the properties of the extractant DH-510A in the processes of copper extraction from ammonia etching solutions, Advances in chemistry and chemical technology (in Russian), 2012, vol. 26, no. 7, p. 105.]
  12. Ильин, В.И., Губин, А.Ф., Кондратьева, Е.С., Бродский, В.А. Совершенствование способа жидкостной экстракции меди. Хим. промышленность сегодня. 2013. № 10. С. 46. [Ilyin, V.I., Gubin, A.F., Kondratieva, E.S., and Brodsky, V.A., Improving the method of liquid extraction of copper, Chemical Industry Today (in Russian), 2013, no. 10, p. 46.]
  13. Smith, J., Recycling of brass wastes: methods and applications, J. Metallurgical Engineering, 2020, vol. 34, no. 4, p. 150.
  14. Li, W., Hydrometallurgical approaches for selective extraction of zinc and copper from brass slags, Chem. Eng. J., 2021, vol. 35, no. 1, p. 123.
  15. Ivanov, A., Innovative pyrometallurgical processing of brass dusts, J. Waste Management and Valorization, 2022, vol. 36, no. 2, p. 200.
  16. Григорьева, А., Колесниченко, Д., Гукасов, Д. Высокопроизводительная система для автоматической регенерации аммиачно-хлоридного травильного раствора. Технологии в электронной промышленности. 2021. № 5. [Grigorieva, A., Kolesnichenko, D., and Gukasov, D., High-performance system for automatic regeneration of ammonium chloride etching solution, Technologies in the Electronic Industry (in Russian), 2021, no. 5.]
  17. Hourn, M. and Turner, D.W., Commercialisation of Albion Process, Alta-2012-Gold Conference, Burswood Convention Centre Perth, Australia, 2012.
  18. Зайцев, П.В., Шнеерсон, Я.М. Автоклавные переработки медьсодержащего сырья. Цветные металлы. 2016. № . 4. С. 26. [Zaitsev, P.V. and Shneerson, Ya.M., Autoclave processing of copper-containing raw materials, Tsvetnye Metally (in Russian), 2016, no. 4, p. 26.]
  19. Bell, M., Design, construction and commissioning of the Sepon Copper POX II circuit, Proc. ALTA 2010 Nickel Cobalt Copper Conference, Perth, 2010.
  20. Mwale, M., Development of selective solvent extraction process-control-low-cost implementation value-addition to hydrometallurgical copper operations, Proc. 60 S.A.B.M. Conference, 2011, vol. P, p. 353–366.
  21. Максимов, И.С., Яворский, А.Р., Бродский, В.А. Переработка металлургических пылей производства бронзы методами выщелачивания и электролиза. Технологии переработки отходов с получением новой продукции: Матер. V Всерос. научно-практ. конференции, г. Киров, 14–15 ноября 2023 г., Киров, 2023, с. 46–50. [Maksimov, I.S., Yavorsky, A.R., and Brodsky, V.A., Processing of metallurgical dusts from bronze production by leaching and electrolysis methods, Technologies of Waste Processing with Obtaining New Products: Proceedings of the V All-Russian Scientific and Practical Conference, Kirov, 14–15 November 2023 (in Russian), Kirov, 2023, p. 46–50.]
  22. Liu, X., Jiang, Z., Hu, S., and Wang, X., Copper extraction from ammoniacal solutions with LIX 84 and LIX 54, Separation and Purification Technology, 2020, vol. 250, p. 117. doi: 10.1016/j.seppur.2020.116887
  23. Ochromowicz, K., Jeziorek, M., and Wejman, K., Copper (II) extraction from ammonia leach solution, Physicochem. Problems Mineral Proc., 2021, vol. 57, p. 137. doi: 10.37190/ppmp/136905
  24. Biswas, A., Sarkar, S., and Bandyopadhyay, A., A review on the impact of mining and mineral processing industries on the environment and their mitigation strategies, J. Environmental Management, 2018, vol. 223, p. 35. doi: 10.1016/j.jenvman.2018.06.063
  25. Wang, Y., Chen, L., Zhang, L., and Wu, J., Recovery of copper from ammonia solutions using LIX 84-I and LIX 54–100, J. Chem. Technol. and Biotechnol., 2021, vol. 96, p. 1525. doi: 10.1002/jctb.6689
  26. Кондратьева, Е.С., Губин, А.Ф., Колесников, В.А. Принципиальная схема переработки медно-цинковых отходов металлургического производства латуни. Металлургия цветных металлов. 2017. № 2. С. 29. DOI: dx.doi.org/10.17073/0021-3438-2017-2-29-35. [Kondratyeva, E.S., Gubin, A.F., and Kolesnikov, V.A., Schematic diagram of processing copper-zinc waste from metallurgical brass production, Metallurgy of Non-Ferrous Metals (in Russian), 2017, no. 2, p. 29.] DOI: dx.doi.org/10.17073/0021-3438-2017-2-29-35

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2026 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).